These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21709394)

  • 21. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data.
    Drews M; Lauritzen B; Madsen H
    Radiat Prot Dosimetry; 2005; 113(1):75-89. PubMed ID: 15572402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of radionuclide atmospheric dispersion and dose assessment for inhabitants of Tehran province after a hypothetical accident of the Tehran Research Reactor.
    Vali R; Adelikhah ME; Feghhi SAH; Noorikalkhoran O; Ahangari R
    Radiat Environ Biophys; 2019 Mar; 58(1):119-128. PubMed ID: 30421068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model for radiological consequences of nuclear power plant operational atmospheric releases.
    Kocar C; Sökmen CN
    J Environ Radioact; 2009 Jan; 100(1):89-93. PubMed ID: 19059683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulating mesoscale transport and diffusion of radioactive noble gases using the Lagrangian particle dispersion model.
    Kim CH; Song CK; Lee SH; Song SK
    J Environ Radioact; 2008 Oct; 99(10):1644-52. PubMed ID: 18590941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dispersion of radionuclides released into a stable planetary boundary layer using a Monte Carlo model.
    Basit A; Shoaib Raza S; Irfan N
    J Radiol Prot; 2006 Dec; 26(4):375-87. PubMed ID: 17146122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of Dutch and German emergency-management models for near border nuclear accidents.
    Kok YS; Eleveld H; Schnadt H; Gering F; Gregor J; Böttger H; Salfeld C; Twenhöfel CJ; Reinen HA
    Radiat Prot Dosimetry; 2005; 113(4):381-91. PubMed ID: 15817577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radioecological consequences of a potential accident during transport of spent nuclear fuel along an Arctic coastline.
    Iosjpe M; Reistad O; Amundsen IB
    J Environ Radioact; 2009 Feb; 100(2):184-91. PubMed ID: 19110346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The Chernobyl incident: dose assessment in Italy and Europe].
    Rogani A; Tabet E
    Ann Ist Super Sanita; 1997; 33(4):511-7. PubMed ID: 9616962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 3D Lagrangian particle model for direct plume gamma dose rate calculations.
    Raza S; Avila R
    J Radiol Prot; 2001 Jun; 21(2):145-54. PubMed ID: 11430515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conservatism in effective dose calculations for accident events involving fuel reprocessing waste tanks.
    Bevelacqua JJ
    Health Phys; 2011 Jul; 101(1):48-58. PubMed ID: 21617391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model.
    Lagzi I; Kármán D; Turányi T; Tomlin AS; Haszpra L
    J Environ Radioact; 2004; 75(1):59-82. PubMed ID: 15149762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiological effluents released by U.S. commercial nuclear power plants from 1995-2005.
    Harris JT; Miller DW
    Health Phys; 2008 Dec; 95(6):734-43. PubMed ID: 19001900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field tests using radioactive matter.
    Prouza Z; Beckova V; Cespirova I; Helebrant J; Hulka J; Kuca P; Michalek V; Rulik P; Skrkal J; Hovorka J
    Radiat Prot Dosimetry; 2010 Jun; 139(4):519-31. PubMed ID: 20089512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of doses received in a dry-contaminated residential area in the Bryansk region, Russia, since the Chernobyl accident.
    Andersson KG; Roed J
    J Environ Radioact; 2006; 85(2-3):228-40. PubMed ID: 16081192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Risk assessment of external events in nuclear facilities.
    Rogani A; Tabet E
    Ann Ist Super Sanita; 2004; 40(2):267-71. PubMed ID: 15536280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The EXPURT model for calculating external gamma doses from deposited material in inhabited areas.
    Jones JA; Singer LN; Brown J
    J Environ Radioact; 2006; 85(2-3):314-29. PubMed ID: 16242820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident.
    Talerko N
    J Environ Radioact; 2005; 78(3):311-29. PubMed ID: 15511565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decision making framework for application of forest countermeasures in the long term after the Chernobyl accident.
    Fesenko SV; Voigt G; Spiridonov SI; Gontarenko IA
    J Environ Radioact; 2005; 82(2):143-66. PubMed ID: 15878415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Radiation doses in the population of the coastal area of the Kakhovsk Water Reservoir].
    Kostenetskiĭ MI; Gribinenko GT; Kravtsova LS; Ryzhova GL; Khripko ZA
    Gig Sanit; 1998; (3):26-8. PubMed ID: 9662887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dutch distribution zones of stable iodine tablets based on atmospheric dispersion modelling of accidental releases from nuclear power plants.
    Kok-Palma Y; Leenders M; Meulenbelt J
    Radiat Prot Dosimetry; 2010 Aug; 140(3):234-41. PubMed ID: 20332130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.