These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Copper-zinc cross-modulation in prion protein binding. Stellato F; Minicozzi V; Millhauser GL; Pascucci M; Proux O; Rossi GC; Spevacek A; Morante S Eur Biophys J; 2014 Dec; 43(12):631-42. PubMed ID: 25395329 [TBL] [Abstract][Full Text] [Related]
3. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site. D'Angelo P; Della Longa S; Arcovito A; Mancini G; Zitolo A; Chillemi G; Giachin G; Legname G; Benetti F Biochemistry; 2012 Aug; 51(31):6068-79. PubMed ID: 22788868 [TBL] [Abstract][Full Text] [Related]
4. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Viles JH; Cohen FE; Prusiner SB; Goodin DB; Wright PE; Dyson HJ Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2042-7. PubMed ID: 10051591 [TBL] [Abstract][Full Text] [Related]
5. Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106-126. Jobling MF; Huang X; Stewart LR; Barnham KJ; Curtain C; Volitakis I; Perugini M; White AR; Cherny RA; Masters CL; Barrow CJ; Collins SJ; Bush AI; Cappai R Biochemistry; 2001 Jul; 40(27):8073-84. PubMed ID: 11434776 [TBL] [Abstract][Full Text] [Related]
6. One octarepeate expansion to the human prion protein alters both the Zn2+ and Cu2+ coordination environments within the octarepeate domain. Shearer J; Rosenkoetter KE; Callan PE; Pham C Inorg Chem; 2011 Feb; 50(4):1173-5. PubMed ID: 21250682 [TBL] [Abstract][Full Text] [Related]
7. Combined EXAFS and DFT structure calculations provide structural insights into the 1:1 multi-histidine complexes of Cu(II) , Cu(I) , and Zn(II) with the tandem octarepeats of the mammalian prion protein. Pushie MJ; Nienaber KH; McDonald A; Millhauser GL; George GN Chemistry; 2014 Jul; 20(31):9770-83. PubMed ID: 25042361 [TBL] [Abstract][Full Text] [Related]
8. Interaction of the human prion PrP(106-126) sequence with copper(II), manganese(II), and zinc(II): NMR and EPR studies. Gaggelli E; Bernardi F; Molteni E; Pogni R; Valensin D; Valensin G; Remelli M; Luczkowski M; Kozlowski H J Am Chem Soc; 2005 Jan; 127(3):996-1006. PubMed ID: 15656638 [TBL] [Abstract][Full Text] [Related]
9. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence. Miura T; Hori-i A; Mototani H; Takeuchi H Biochemistry; 1999 Aug; 38(35):11560-9. PubMed ID: 10471308 [TBL] [Abstract][Full Text] [Related]
10. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein. McDonald A; Pushie MJ; Millhauser GL; George GN J Phys Chem B; 2013 Nov; 117(44):13822-41. PubMed ID: 24102071 [TBL] [Abstract][Full Text] [Related]
11. Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein. Kenward AG; Bartolotti LJ; Burns CS Biochemistry; 2007 Apr; 46(14):4261-71. PubMed ID: 17371047 [TBL] [Abstract][Full Text] [Related]
12. The dimeric and tetrameric octarepeat fragments of prion protein behave differently to its monomeric unit. Valensin D; Luczkowski M; Mancini FM; Legowska A; Gaggelli E; Valensin G; Rolka K; Kozlowski H Dalton Trans; 2004 May; (9):1284-93. PubMed ID: 15252619 [TBL] [Abstract][Full Text] [Related]
13. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Aronoff-Spencer E; Burns CS; Avdievich NI; Gerfen GJ; Peisach J; Antholine WE; Ball HL; Cohen FE; Prusiner SB; Millhauser GL Biochemistry; 2000 Nov; 39(45):13760-71. PubMed ID: 11076515 [TBL] [Abstract][Full Text] [Related]
14. Copper(II) coordination outside the tandem repeat region of an unstructured domain of chicken prion protein. Gralka E; Valensin D; Gajda K; Bacco D; Szyrwiel L; Remelli M; Valensin G; Kamasz W; Baranska-Rybak W; Kozłowski H Mol Biosyst; 2009 May; 5(5):497-510. PubMed ID: 19381364 [TBL] [Abstract][Full Text] [Related]
15. Folding of the prion peptide GGGTHSQW around the copper(II) ion: identifying the oxygen donor ligand at neutral pH and probing the proximity of the tryptophan residue to the copper ion. Hureau C; Mathé C; Faller P; Mattioli TA; Dorlet P J Biol Inorg Chem; 2008 Sep; 13(7):1055-64. PubMed ID: 18500541 [TBL] [Abstract][Full Text] [Related]
16. The octapeptide repeat region of prion protein binds Cu(II) in the redox-inactive state. Shiraishi N; Ohta Y; Nishikimi M Biochem Biophys Res Commun; 2000 Jan; 267(1):398-402. PubMed ID: 10623631 [TBL] [Abstract][Full Text] [Related]
17. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein. Jószai V; Turi I; Kállay C; Pappalardo G; Di Natale G; Rizzarelli E; Sóvágó I J Inorg Biochem; 2012 Jul; 112():17-24. PubMed ID: 22542592 [TBL] [Abstract][Full Text] [Related]
18. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Miura T; Sasaki S; Toyama A; Takeuchi H Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778 [TBL] [Abstract][Full Text] [Related]
19. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry. Whittal RM; Ball HL; Cohen FE; Burlingame AL; Prusiner SB; Baldwin MA Protein Sci; 2000 Feb; 9(2):332-43. PubMed ID: 10716185 [TBL] [Abstract][Full Text] [Related]
20. Interaction of copper(II) with the prion peptide fragment HuPrP(76-114) encompassing four histidyl residues within and outside the octarepeat domain. Di Natale G; Osz K; Nagy Z; Sanna D; Micera G; Pappalardo G; Sóvágó I; Rizzarell E Inorg Chem; 2009 May; 48(9):4239-50. PubMed ID: 19348438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]