BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 21710316)

  • 1. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.
    Tahan A; Monajjemi M
    Acta Biotheor; 2011 Dec; 59(3-4):291-312. PubMed ID: 21710316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations.
    Barbe S; Lafaquière V; Guieysse D; Monsan P; Remaud-Siméon M; André I
    Proteins; 2009 Nov; 77(3):509-23. PubMed ID: 19475702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational studies of essential dynamics of Pseudomonas cepacia lipase.
    Lee J; Suh SW; Shin S
    J Biomol Struct Dyn; 2000 Oct; 18(2):297-309. PubMed ID: 11089650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational analysis of amino acids and short peptides in hydrated media. VII. Energy landscapes, energetic and geometrical features of L-histidine with protonated and neutral side chains.
    Pflüger F; Hernández B; Ghomi M
    J Phys Chem B; 2010 Jul; 114(27):9072-83. PubMed ID: 20568807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent effect on the absorption spectra of coumarin 120 in water: A combined quantum mechanical and molecular mechanical study.
    Sakata T; Kawashima Y; Nakano H
    J Chem Phys; 2011 Jan; 134(1):014501. PubMed ID: 21219001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase.
    Trodler P; Schmid RD; Pleiss J
    BMC Struct Biol; 2009 May; 9():38. PubMed ID: 19476626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of activation of Burkholderia cepacia lipase at aqueous-organic interfaces.
    de Oliveira IP; Jara GE; Martínez L
    Phys Chem Chem Phys; 2017 Nov; 19(46):31499-31507. PubMed ID: 29160871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of lithiated lysine and structural analogues in the gas phase: effects of water and proton affinity on zwitterionic stability.
    Lemoff AS; Bush MF; O'Brien JT; Williams ER
    J Phys Chem A; 2006 Jul; 110(27):8433-42. PubMed ID: 16821826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the origin of the stabilization of the zwitterionic resting state of cysteine proteases: a theoretical study.
    Mladenovic M; Fink RF; Thiel W; Schirmeister T; Engels B
    J Am Chem Soc; 2008 Jul; 130(27):8696-705. PubMed ID: 18557615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous esterification by lipase from Burkholderia cepacia in the fluorinated solvent.
    Shipovskov S
    Biotechnol Prog; 2008; 24(6):1262-6. PubMed ID: 19194939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the competition between intramolecular hydrogen bonds and solvation in the Cys-Asn-Ser tripeptide.
    Soriano-Correa C; Olivares del Valle FJ; Muñoz-Losa A; Fdez Galván I; Martín ME; Aguilar MA
    J Phys Chem B; 2010 Jul; 114(27):8961-70. PubMed ID: 20568808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of the lipase-mediated desymmetrisation of 2-substituted-propane-1,3-diamines.
    García-Urdiales E; Busto E; Ríos-Lombardía N; Gotor-Fernández V; Gotor V
    Chembiochem; 2009 Dec; 10(18):2875-83. PubMed ID: 19885896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the structure and absorption spectra of stilbazolium merocyanine in polar and nonpolar solvents using hybrid QM/MM techniques.
    Murugan NA; Kongsted J; Rinkevicius Z; Aidas K; Ågren H
    J Phys Chem B; 2010 Oct; 114(42):13349-57. PubMed ID: 20925401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid residues involved in organic solvent-stability of the LST-03 lipase.
    Kawata T; Ogino H
    Biochem Biophys Res Commun; 2010 Sep; 400(3):384-8. PubMed ID: 20800576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsolvation and hydrogen bond interactions in Glycine Dipeptide: molecular dynamics and density functional theory studies.
    Yogeswari B; Kanakaraju R; Boopathi S; Kolandaivel P
    J Mol Graph Model; 2012 May; 35():11-20. PubMed ID: 22481074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.