These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21710446)

  • 1. Developmental plasticity of human foetal femur-derived cells in pellet culture: self assembly of an osteoid shell around a cartilaginous core.
    El-Serafi AT; Wilson DI; Roach HI; Oreffo RO
    Eur Cell Mater; 2011 Jun; 21():558-67. PubMed ID: 21710446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human endothelial and foetal femur-derived stem cell co-cultures modulate osteogenesis and angiogenesis.
    Inglis S; Christensen D; Wilson DI; Kanczler JM; Oreffo RO
    Stem Cell Res Ther; 2016 Jan; 7():13. PubMed ID: 26781715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regionally-derived cell populations and skeletal stem cells from human foetal femora exhibit specific osteochondral and multi-lineage differentiation capacity in vitro and ex vivo.
    Gothard D; Cheung K; Kanczler JM; Wilson DI; Oreffo RO
    Stem Cell Res Ther; 2015 Dec; 6():251. PubMed ID: 26684339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and multipotentiality of human fetal femur-derived cells: implications for skeletal tissue regeneration.
    Mirmalek-Sani SH; Tare RS; Morgan SM; Roach HI; Wilson DI; Hanley NA; Oreffo RO
    Stem Cells; 2006 Apr; 24(4):1042-53. PubMed ID: 16373694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-146a regulates human foetal femur derived skeletal stem cell differentiation by down-regulating SMAD2 and SMAD3.
    Cheung KS; Sposito N; Stumpf PS; Wilson DI; Sanchez-Elsner T; Oreffo RO
    PLoS One; 2014; 9(6):e98063. PubMed ID: 24892945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells.
    Wu YN; Yang Z; Hui JH; Ouyang HW; Lee EH
    Biomaterials; 2007 Oct; 28(28):4056-67. PubMed ID: 17590431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of 1α, 25-dihydroxyvitamin D3 and transforming growth factor-β3 on bone development in an ex vivo organotypic culture system of embryonic chick femora.
    Smith EL; Rashidi H; Kanczler JM; Shakesheff KM; Oreffo RO
    PLoS One; 2015; 10(4):e0121653. PubMed ID: 25835745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ex vivo model for chondrogenesis and osteogenesis.
    Pound JC; Green DW; Roach HI; Mann S; Oreffo RO
    Biomaterials; 2007 Jun; 28(18):2839-49. PubMed ID: 17363052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures.
    Markway BD; Tan GK; Brooke G; Hudson JE; Cooper-White JJ; Doran MR
    Cell Transplant; 2010; 19(1):29-42. PubMed ID: 19878627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?
    Im GI; Shin YW; Lee KB
    Osteoarthritis Cartilage; 2005 Oct; 13(10):845-53. PubMed ID: 16129630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity.
    Anderson DE; Markway BD; Bond D; McCarthy HE; Johnstone B
    Stem Cell Res Ther; 2016 Oct; 7(1):154. PubMed ID: 27765063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells.
    Muraglia A; Corsi A; Riminucci M; Mastrogiacomo M; Cancedda R; Bianco P; Quarto R
    J Cell Sci; 2003 Jul; 116(Pt 14):2949-55. PubMed ID: 12783985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chondrogenic differentiation potential of adult and fetal equine cell types.
    Adam EN; Janes J; Lowney R; Lambert J; Thampi P; Stromberg A; MacLeod JN
    Vet Surg; 2019 Apr; 48(3):375-387. PubMed ID: 30801754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo.
    Ng J; Wei Y; Zhou B; Burapachaisri A; Guo E; Vunjak-Novakovic G
    Stem Cell Res Ther; 2016 Dec; 7(1):183. PubMed ID: 27931263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells.
    Saliken DJ; Mulet-Sierra A; Jomha NM; Adesida AB
    Arthritis Res Ther; 2012 Jun; 14(3):R153. PubMed ID: 22726892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification.
    Osinga R; Di Maggio N; Todorov A; Allafi N; Barbero A; Laurent F; Schaefer DJ; Martin I; Scherberich A
    Stem Cells Transl Med; 2016 Aug; 5(8):1090-7. PubMed ID: 27334490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic and chondrogenic differentiation: comparison of human and rat bone marrow mesenchymal stem cells cultured into polymeric scaffolds.
    Zavan B; Giorgi C; Bagnara GP; Vindigni V; Abatangelo G; Cortivo R
    Eur J Histochem; 2007; 51 Suppl 1():1-8. PubMed ID: 17703587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aesculetin Accelerates Osteoblast Differentiation and Matrix-Vesicle-Mediated Mineralization.
    Na W; Kang MK; Park SH; Kim DY; Oh SY; Oh MS; Park S; Kang IJ; Kang YH
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair?
    Farrell E; van der Jagt OP; Koevoet W; Kops N; van Manen CJ; Hellingman CA; Jahr H; O'Brien FJ; Verhaar JA; Weinans H; van Osch GJ
    Tissue Eng Part C Methods; 2009 Jun; 15(2):285-95. PubMed ID: 19505182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.