These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 21710568)
1. Status quo in physiological proteomics of the uncultured Riftia pachyptila endosymbiont. Markert S; Gardebrecht A; Felbeck H; Sievert SM; Klose J; Becher D; Albrecht D; Thürmer A; Daniel R; Kleiner M; Hecker M; Schweder T Proteomics; 2011 Aug; 11(15):3106-17. PubMed ID: 21710568 [TBL] [Abstract][Full Text] [Related]
2. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Markert S; Arndt C; Felbeck H; Becher D; Sievert SM; Hügler M; Albrecht D; Robidart J; Bench S; Feldman RA; Hecker M; Schweder T Science; 2007 Jan; 315(5809):247-50. PubMed ID: 17218528 [TBL] [Abstract][Full Text] [Related]
3. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Robidart JC; Bench SR; Feldman RA; Novoradovsky A; Podell SB; Gaasterland T; Allen EE; Felbeck H Environ Microbiol; 2008 Mar; 10(3):727-37. PubMed ID: 18237306 [TBL] [Abstract][Full Text] [Related]
4. Host-Microbe Interactions in the Chemosynthetic Hinzke T; Kleiner M; Breusing C; Felbeck H; Häsler R; Sievert SM; Schlüter R; Rosenstiel P; Reusch TBH; Schweder T; Markert S mBio; 2019 Dec; 10(6):. PubMed ID: 31848270 [TBL] [Abstract][Full Text] [Related]
5. Microbiology. A proteomic snapshot of life at a vent. Fisher CR; Girguis P Science; 2007 Jan; 315(5809):198-9. PubMed ID: 17218516 [No Abstract] [Full Text] [Related]
6. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Leonard JM; Mitchell J; Beinart RA; Delaney JA; Sanders JG; Ellis G; Goddard EA; Girguis PR; Scott KM Appl Environ Microbiol; 2021 Aug; 87(17):e0079421. PubMed ID: 34190607 [TBL] [Abstract][Full Text] [Related]
7. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila. Mitchell JH; Leonard JM; Delaney J; Girguis PR; Scott KM Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31628148 [TBL] [Abstract][Full Text] [Related]
8. Physiological homogeneity among the endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. Gardebrecht A; Markert S; Sievert SM; Felbeck H; Thürmer A; Albrecht D; Wollherr A; Kabisch J; Le Bris N; Lehmann R; Daniel R; Liesegang H; Hecker M; Schweder T ISME J; 2012 Apr; 6(4):766-76. PubMed ID: 22011719 [TBL] [Abstract][Full Text] [Related]
9. Proteomics of the uncultured endosymbiont of Riftia pachyptila. How deep, fried worms eat. Griffiths J Anal Chem; 2007 Apr; 79(7):2612. PubMed ID: 17476724 [No Abstract] [Full Text] [Related]
10. Linking hydrothermal geochemistry to organismal physiology: physiological versatility in Riftia pachyptila from sedimented and basalt-hosted vents. Robidart JC; Roque A; Song P; Girguis PR PLoS One; 2011; 6(7):e21692. PubMed ID: 21779334 [TBL] [Abstract][Full Text] [Related]
11. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature. Girguis PR; Childress JJ J Exp Biol; 2006 Sep; 209(Pt 18):3516-28. PubMed ID: 16943492 [TBL] [Abstract][Full Text] [Related]
12. Sulfur-oxidizing symbionts have not co-evolved with their hydrothermal vent tube worm hosts: an RFLP analysis. Laue BE; Nelson DC Mol Mar Biol Biotechnol; 1997 Sep; 6(3):180-8. PubMed ID: 9284558 [TBL] [Abstract][Full Text] [Related]
13. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Felbeck H; Jarchow J Physiol Zool; 1998; 71(3):294-302. PubMed ID: 9634176 [TBL] [Abstract][Full Text] [Related]
14. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. Hinzke T; Kleiner M; Meister M; Schlüter R; Hentschker C; Pané-Farré J; Hildebrandt P; Felbeck H; Sievert SM; Bonn F; Völker U; Becher D; Schweder T; Markert S Elife; 2021 Jan; 10():. PubMed ID: 33404502 [TBL] [Abstract][Full Text] [Related]
15. Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont. Minic Z; Hervé G Eur J Biochem; 2004 Aug; 271(15):3093-102. PubMed ID: 15265029 [TBL] [Abstract][Full Text] [Related]
16. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Feldman RA; Black MB; Cary CS; Lutz RA; Vrijenhoek RC Mol Mar Biol Biotechnol; 1997 Sep; 6(3):268-77. PubMed ID: 9284565 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Laue BE; Nelson DC J Bacteriol; 1994 Jun; 176(12):3723-9. PubMed ID: 8206850 [TBL] [Abstract][Full Text] [Related]
18. Endosymbiont genomes yield clues of tubeworm success. Li Y; Liles MR; Halanych KM ISME J; 2018 Nov; 12(11):2785-2795. PubMed ID: 30022157 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Millikan DS; Felbeck H; Stein JL Appl Environ Microbiol; 1999 Jul; 65(7):3129-33. PubMed ID: 10388713 [TBL] [Abstract][Full Text] [Related]
20. Aspects of life development at deep sea hydrothermal vents. Gaill F FASEB J; 1993 Apr; 7(6):558-65. PubMed ID: 8472894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]