BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

597 related articles for article (PubMed ID: 21710974)

  • 1. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G; Wang H; Ling Y; Tang Y; Yang X; Fitzmorris RC; Wang C; Zhang JZ; Li Y
    Nano Lett; 2011 Jul; 11(7):3026-33. PubMed ID: 21710974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO₂ Nanowire Arrays by Nitrogen Implantation.
    Wang G; Xiao X; Li W; Lin Z; Zhao Z; Chen C; Wang C; Li Y; Huang X; Miao L; Jiang C; Huang Y; Duan X
    Nano Lett; 2015 Jul; 15(7):4692-8. PubMed ID: 26052643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion.
    Xu M; Da P; Wu H; Zhao D; Zheng G
    Nano Lett; 2012 Mar; 12(3):1503-8. PubMed ID: 22364360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating.
    Hwang YJ; Hahn C; Liu B; Yang P
    ACS Nano; 2012 Jun; 6(6):5060-9. PubMed ID: 22621345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium Dioxide Nanorods with Hydrogenated Oxygen Vacancies for Enhanced Solar Water Splitting.
    Sun B; Shi T; Tan X; Liu Z; Wu Y; Liao G
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6148-54. PubMed ID: 27427684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation.
    Cheng C; Karuturi SK; Liu L; Liu J; Li H; Su LT; Tok AI; Fan HJ
    Small; 2012 Jan; 8(1):37-42. PubMed ID: 22009604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation.
    Wang G; Yang X; Qian F; Zhang JZ; Li Y
    Nano Lett; 2010 Mar; 10(3):1088-92. PubMed ID: 20148567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting.
    Yang X; Wolcott A; Wang G; Sobo A; Fitzmorris RC; Qian F; Zhang JZ; Li Y
    Nano Lett; 2009 Jun; 9(6):2331-6. PubMed ID: 19449878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective silicon nanowire arrays/WO
    Chen Z; Ning M; Ma G; Meng Q; Zhang Y; Gao J; Jin M; Chen Z; Yuan M; Wang X; Liu JM; Zhou G
    Nanotechnology; 2017 Jul; 28(27):275401. PubMed ID: 28531092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting.
    Gonçalves RH; Leite LD; Leite ER
    ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched TiO₂ nanorods for photoelectrochemical hydrogen production.
    Cho IS; Chen Z; Forman AJ; Kim DR; Rao PM; Jaramillo TF; Zheng X
    Nano Lett; 2011 Nov; 11(11):4978-84. PubMed ID: 21999403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photoelectrochemical water splitting activity of carbon nanotubes@TiO
    Ahmed AM; Mohamed F; Ashraf AM; Shaban M; Aslam Parwaz Khan A; Asiri AM
    Chemosphere; 2020 Jan; 238():124554. PubMed ID: 31421463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy.
    Kamimura J; Bogdanoff P; Lähnemann J; Hauswald C; Geelhaar L; Fiechter S; Riechert H
    J Am Chem Soc; 2013 Jul; 135(28):10242-5. PubMed ID: 23799779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting.
    Allam NK; Poncheri AJ; El-Sayed MA
    ACS Nano; 2011 Jun; 5(6):5056-66. PubMed ID: 21568298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible chemical tuning of charge carriers for enhanced photoelectrochemical conversion and probing of living cells.
    Wang Y; Tang J; Zhou T; Da P; Li J; Kong B; Yang Z; Zheng G
    Small; 2014 Dec; 10(23):4967-74. PubMed ID: 25044916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity.
    Hwang YJ; Boukai A; Yang P
    Nano Lett; 2009 Jan; 9(1):410-5. PubMed ID: 19053790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled charge-dynamics in cobalt-doped TiO
    Liu C; Wang F; Zhu S; Xu Y; Liang Q; Chen Z
    J Colloid Interface Sci; 2018 Nov; 530():403-411. PubMed ID: 29982032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.