These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21710993)

  • 1. Molecular mechanism for eliminylation, a newly discovered post-translational modification.
    Ke Z; Smith GK; Zhang Y; Guo H
    J Am Chem Soc; 2011 Jul; 133(29):11103-5. PubMed ID: 21710993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for the catalytic mechanism of phosphothreonine lyase.
    Chen L; Wang H; Zhang J; Gu L; Huang N; Zhou JM; Chai J
    Nat Struct Mol Biol; 2008 Jan; 15(1):101-2. PubMed ID: 18084305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases.
    Brennan DF; Barford D
    Trends Biochem Sci; 2009 Mar; 34(3):108-14. PubMed ID: 19233656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational investigation of the enzymatic mechanisms of phosphothreonine lyase.
    Pei Q; Christofferson A; Zhang H; Chai J; Huang N
    Biophys Chem; 2011 Aug; 157(1-3):16-23. PubMed ID: 21558045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active-site dynamics of SpvC virulence factor from Salmonella typhimurium and density functional theory study of phosphothreonine lyase catalysis.
    Smith GK; Ke Z; Hengge AC; Xu D; Xie D; Guo H
    J Phys Chem B; 2009 Nov; 113(46):15327-33. PubMed ID: 19715325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide search for eliminylating domains reveals novel function for BLES03-like proteins.
    Khater S; Mohanty D
    Genome Biol Evol; 2014 Jul; 6(8):2017-33. PubMed ID: 25062915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection.
    Haneda T; Ishii Y; Shimizu H; Ohshima K; Iida N; Danbara H; Okada N
    Cell Microbiol; 2012 Apr; 14(4):485-99. PubMed ID: 22188134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of Arabidopsis O-acetylserine(thiol)lyase A1 by tyrosine nitration.
    Alvarez C; Lozano-Juste J; Romero LC; García I; Gotor C; León J
    J Biol Chem; 2011 Jan; 286(1):578-86. PubMed ID: 21047785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration of structure-function relationships in Escherichia coli cystathionine γ-synthase and cystathionine β-lyase via chimeric constructs and site-specific substitutions.
    Manders AL; Jaworski AF; Ahmed M; Aitken SM
    Biochim Biophys Acta; 2013 Jun; 1834(6):1044-53. PubMed ID: 23470500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity.
    Aitken SM; Kirsch JF
    Arch Biochem Biophys; 2005 Jan; 433(1):166-75. PubMed ID: 15581575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitting the allosteric signal in methylglyoxal synthase.
    Falahati H; Pazhang M; Zareian S; Ghaemi N; Rofougaran R; Hofer A; Rezaie AR; Khajeh K
    Protein Eng Des Sel; 2013 Jul; 26(7):445-52. PubMed ID: 23592737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystathionine gamma-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants.
    Amir R; Hacham Y; Galili G
    Trends Plant Sci; 2002 Apr; 7(4):153-6. PubMed ID: 11950610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threonine eliminylation by bacterial phosphothreonine lyases rapidly causes cross-linking of mitogen-activated protein kinase (MAPK) in live cells.
    Meijer BM; Jang SM; Guerrera IC; Chhuon C; Lipecka J; Reisacher C; Baleux F; Sansonetti PJ; Muchardt C; Arbibe L
    J Biol Chem; 2017 May; 292(19):7784-7794. PubMed ID: 28325837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of the active site of Escherichia coli cystathionine γ-synthase.
    Jaworski AF; Lodha PH; Manders AL; Aitken SM
    Protein Sci; 2012 Nov; 21(11):1662-71. PubMed ID: 22855027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A QM/MM study of the L-threonine formation reaction of threonine synthase: implications into the mechanism of the reaction specificity.
    Shoji M; Hanaoka K; Ujiie Y; Tanaka W; Kondo D; Umeda H; Kamoshida Y; Kayanuma M; Kamiya K; Shiraishi K; Machida Y; Murakawa T; Hayashi H
    J Am Chem Soc; 2014 Mar; 136(12):4525-33. PubMed ID: 24568243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conferral of allostery to Thermus sp. GH5 methylglyoxal synthase by a single mutation.
    Farsi Z; Pein H; Pazhang M; Zareian S; Ranaei-Siadat SO; Khajeh K
    J Biochem; 2012 Dec; 152(6):531-8. PubMed ID: 23038673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative allosteric pathway in thermophilic methylglyoxal synthase.
    Atabakhshi-Kashi M; Mohammadi M; Mirhassani R; Dabirmanesh B; Sajedi RH; Khajeh K
    Int J Biol Macromol; 2016 Dec; 93(Pt A):526-533. PubMed ID: 27608544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli cystathionine gamma-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions.
    Aitken SM; Kim DH; Kirsch JF
    Biochemistry; 2003 Sep; 42(38):11297-306. PubMed ID: 14503880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase.
    Zhu Y; Li H; Long C; Hu L; Xu H; Liu L; Chen S; Wang DC; Shao F
    Mol Cell; 2007 Dec; 28(5):899-913. PubMed ID: 18060821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of methylglyoxal synthase from Escherichia coli.
    Saadat D; Harrison DH
    Structure; 1999 Mar; 7(3):309-17. PubMed ID: 10368300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.