These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21711011)

  • 41. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retention of organophosphorous insecticides on a calcareous soil modified by organic amendments and a surfactant.
    Hernández-Soriano MC; Peña A; Mingorance MD
    Sci Total Environ; 2007 May; 378(1-2):109-13. PubMed ID: 17316770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functionalized polystyrene microspheres as Cryptosporidium surrogates.
    Liu L; Wang Y; Narain R; Liu Y
    Colloids Surf B Biointerfaces; 2019 Mar; 175():680-687. PubMed ID: 30590329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of ionic strength and soil characteristics on the behavior of Cryptosporidium oocysts in saturated porous media.
    Balthazard-Accou K; Fifi U; Agnamey P; Casimir JA; Brasseur P; Emmanuel E
    Chemosphere; 2014 May; 103():114-20. PubMed ID: 24359923
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Die-off of Cryptosporidium parvum in soil and wastewater effluents.
    Nasser AM; Tweto E; Nitzan Y
    J Appl Microbiol; 2007 Jan; 102(1):169-76. PubMed ID: 17184332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden--geochemical modeling of organic matter solubility during acidification recovery.
    Löfgren S; Gustafsson JP; Bringmark L
    Sci Total Environ; 2010 Dec; 409(1):201-10. PubMed ID: 20937521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2.
    Rivera-Utrilla J; Méndez-Díaz J; Sánchez-Polo M; Ferro-García MA; Bautista-Toledo I
    Water Res; 2006 May; 40(8):1717-25. PubMed ID: 16597457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport of Cryptosporidium parvum oocysts in a silicon micromodel.
    Liu Y; Zhang C; Hilpert M; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Environ Sci Technol; 2012 Feb; 46(3):1471-9. PubMed ID: 22229872
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.
    Stankus DP; Lohse SE; Hutchison JE; Nason JA
    Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in organic matter and residual effect of amendment with two-phase olive-mill waste on degraded agricultural soils.
    López-Piñeiro A; Murillo S; Barreto C; Muñoz A; Rato JM; Albarrán A; García A
    Sci Total Environ; 2007 May; 378(1-2):84-9. PubMed ID: 17276494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aqueous stability and mobility of C₆₀ complexed by sodium dodecyl benzene sulfonate surfactant.
    Peng X; Yuan Y; Wang H; Liang C
    J Environ Sci (China); 2016 Apr; 42():89-96. PubMed ID: 27090698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modelling Cryptosporidium oocysts transport in small ungauged agricultural catchments.
    Tang J; McDonald S; Peng X; Samadder SR; Murphy TM; Holden NM
    Water Res; 2011 Jun; 45(12):3665-80. PubMed ID: 21555142
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns.
    Fang J; Shan XQ; Wen B; Lin JM; Owens G
    Environ Pollut; 2009 Apr; 157(4):1101-9. PubMed ID: 19081659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developing risk models of Cryptosporidium transport in soils from vegetated, tilted soilbox experiments.
    Harter T; Atwill ER; Hou L; Karle BM; Tate KW
    J Environ Qual; 2008; 37(1):245-58. PubMed ID: 18178898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling.
    Her N; Amy G; Park HR; Song M
    Water Res; 2004 Mar; 38(6):1427-38. PubMed ID: 15016519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.
    King BJ; Hoefel D; Daminato DP; Fanok S; Monis PT
    J Appl Microbiol; 2008 May; 104(5):1311-23. PubMed ID: 18248370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ageing behavior of phenanthrene and pyrene in soils: a study using sodium dodecylbenzenesulfonate extraction.
    Zhao Q; Weise L; Li P; Yang K; Zhang Y; Dong D; Li P; Li X
    J Hazard Mater; 2010 Nov; 183(1-3):881-7. PubMed ID: 20800355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sorption of 3,4-dichloroaniline on four contrasting Greek agricultural soils and the effect of liming.
    Droulia FE; Kati V; Giannopolitis CN
    J Environ Sci Health B; 2011; 46(5):404-10. PubMed ID: 21614714
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape.
    Wilkes G; Edge T; Gannon V; Jokinen C; Lyautey E; Medeiros D; Neumann N; Ruecker N; Topp E; Lapen DR
    Water Res; 2009 May; 43(8):2209-23. PubMed ID: 19339033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.