These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21711584)

  • 21. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures.
    Timofeev VA; Nikiforov AI; Tuktamyshev AR; Mashanov VI; Loshkarev ID; Bloshkin AA; Gutakovskii AK
    Nanotechnology; 2018 Apr; 29(15):154002. PubMed ID: 29388560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stranski-Krastanow growth of germanium on silicon nanowires.
    Pan L; Lew KK; Redwing JM; Dickey EC
    Nano Lett; 2005 Jun; 5(6):1081-5. PubMed ID: 15943447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence of
    Garagnani D; De Padova P; Ottaviani C; Quaresima C; Generosi A; Paci B; Olivieri B; Jałochowski M; Krawiec M
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of the Si cap layer on the SiGe islands morphology.
    Zak M; Laval JY; Dłuzewski PA; Kret S; Yam V; Bouchier D; Fossard F
    Micron; 2009 Jan; 40(1):122-5. PubMed ID: 18395456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.
    Yuryev VA; Arapkina LV
    Nanoscale Res Lett; 2011 Sep; 6(1):522. PubMed ID: 21892938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoluminescence from GeSn nano-heterostructures.
    Schlykow V; Zaumseil P; Schubert MA; Skibitzki O; Yamamoto Y; Klesse WM; Hou Y; Virgilio M; De Seta M; Di Gaspare L; Schroeder T; Capellini G
    Nanotechnology; 2018 Oct; 29(41):415702. PubMed ID: 30047925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modified Stranski-Krastanov growth in Ge/Si heterostructures via nanostenciled pulsed laser deposition.
    MacLeod JM; Cojocaru CV; Ratto F; Harnagea C; Bernardi A; Alonso MI; Rosei F
    Nanotechnology; 2012 Feb; 23(6):065603. PubMed ID: 22248479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural evolution of GeMn/Ge superlattices grown by molecular beam epitaxy under different growth conditions.
    Wang Y; Liao Z; Xu H; Xiu F; Kou X; Wang Y; Wang KL; Drennan J; Zou J
    Nanoscale Res Lett; 2011 Dec; 6(1):624. PubMed ID: 22151995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ Control of Si/Ge Growth on Stripe-Patterned Substrates Using Reflection High-Energy Electron Diffraction and Scanning Tunneling Microscopy.
    Sanduijav B; Matei DG; Springholz G
    Nanoscale Res Lett; 2010 Oct; 5(12):1935-41. PubMed ID: 21170141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.
    Roy A; Guchhait S; Dey R; Pramanik T; Hsieh CC; Rai A; Banerjee SK
    ACS Nano; 2015 Apr; 9(4):3772-9. PubMed ID: 25848950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Digital Etch Technique for Forming Ultra-Scaled Germanium-Tin (Ge
    Wang W; Lei D; Dong Y; Gong X; Tok ES; Yeo YC
    Sci Rep; 2017 May; 7(1):1835. PubMed ID: 28500296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111).
    Jum'h I; Abu-Safe HH; Ware ME; Qattan IA; Telfah A; Tavares CJ
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superior optical (λ ∼ 1550 nm) emission and detection characteristics of Ge microdisks grown on virtual Si
    Singh S; Katiyar AK; Sarkar A; Shihabudeen PK; Chaudhuri AR; Goswami DK; Ray SK
    Nanotechnology; 2020 Mar; 31(11):115206. PubMed ID: 31756729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolution of point defects in pulsed-laser-melted Ge
    Steuer O; Liedke MO; Butterling M; Schwarz D; Schulze J; Li Z; Wagner A; Fischer IA; Hübner R; Zhou S; Helm M; Cuniberti G; Georgiev YM; Prucnal S
    J Phys Condens Matter; 2023 Nov; 36(8):. PubMed ID: 37931296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale growth of a Sn-guided SiGeSn alloy on Si (111) substrates by molecular beam epitaxy.
    Wang L; Zhang Y; Sun H; You J; Miao Y; Dong Z; Liu T; Jiang Z; Hu H
    Nanoscale Adv; 2021 Feb; 3(4):997-1004. PubMed ID: 36133284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling the Polarity of the Molecular Beam Epitaxy Grown In-Bi Atomic Film on the Si(111) Surface.
    Lin CY; Hsu CH; Huang YZ; Hsieh SC; Chen HD; Huang L; Huang ZQ; Chuang FC; Lin DS
    Sci Rep; 2019 Jan; 9(1):756. PubMed ID: 30679630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size.
    Schilling M; Ziemann P; Zhang Z; Biskupek J; Kaiser U; Wiedwald U
    Beilstein J Nanotechnol; 2016; 7():591-604. PubMed ID: 27335749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The growth of a low defect InAs HEMT structure on Si by using an AlGaSb buffer layer containing InSb quantum dots for dislocation termination.
    Ko KM; Seo JH; Kim DE; Lee ST; Noh YK; Kim MD; Oh JE
    Nanotechnology; 2009 Jun; 20(22):225201. PubMed ID: 19433876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of in situ annealing of GaAs(100) substrates on the subsequent growth of InAs quantum dots by molecular beam epitaxy.
    Morales-Cortés H; Mejía-García C; Méndez-García VH; Vázquez-Cortés D; Rojas-Ramírez JS; Contreras-Guerrero R; Ramírez-López M; Martínez-Velis I; López-López M
    Nanotechnology; 2010 Apr; 21(13):134012. PubMed ID: 20208110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ge
    Tallapally V; Nakagawara TA; Demchenko DO; Özgür Ü; Arachchige IU
    Nanoscale; 2018 Nov; 10(43):20296-20305. PubMed ID: 30374504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.