These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 21711704)
1. The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale. Cao Z; She Q; Huang Y; Meng X Nanoscale Res Lett; 2011 Mar; 6(1):186. PubMed ID: 21711704 [TBL] [Abstract][Full Text] [Related]
2. Size effect on the deformation mechanisms of nanocrystalline platinum thin films. Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum. Babu PN; Pal S J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920 [TBL] [Abstract][Full Text] [Related]
4. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation. Pal S; Meraj M J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178 [TBL] [Abstract][Full Text] [Related]
5. Microstructure evolution and the deformation mechanism in nanocrystalline superior-deformed tantalum. Li P; Wang A; Qi M; Zhao C; Li Z; Zhanhong W; Koval V; Yan H Nanoscale; 2024 Feb; 16(9):4826-4840. PubMed ID: 38312054 [TBL] [Abstract][Full Text] [Related]
6. Structural Evolution and Transitions of Mechanisms in Creep Deformation of Nanocrystalline FeCrAl Alloys. Yao H; Ye T; Wang P; Wu J; Zhang J; Chen P Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839000 [TBL] [Abstract][Full Text] [Related]
7. Competing grain-boundary- and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Li X; Wei Y; Yang W; Gao H Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16108-13. PubMed ID: 19805266 [TBL] [Abstract][Full Text] [Related]
8. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide. Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450 [TBL] [Abstract][Full Text] [Related]
9. The synergistic effect of grain boundary and grain orientation on micro-mechanical properties of austenitic stainless steel. Hu CY; Wan XL; Zhang YJ; Deng XT; Wang ZD; Misra RDK J Mech Behav Biomed Mater; 2021 Jun; 118():104473. PubMed ID: 33773237 [TBL] [Abstract][Full Text] [Related]
10. Molecular Dynamics as a Means to Investigate Grain Size and Strain Rate Effect on Plastic Deformation of 316 L Nanocrystalline Stainless-Steel. Husain A; La P; Hongzheng Y; Jie S Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698390 [TBL] [Abstract][Full Text] [Related]
11. Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy. Zhao F; Zhang J; He C; Zhang Y; Gao X; Xie L Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872153 [TBL] [Abstract][Full Text] [Related]
12. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Wang L; Teng J; Liu P; Hirata A; Ma E; Zhang Z; Chen M; Han X Nat Commun; 2014 Jul; 5():4402. PubMed ID: 25030380 [TBL] [Abstract][Full Text] [Related]
13. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation. Zhang L; Lu C; Tieu K; Zhao X; Pei L Nanoscale; 2015 Apr; 7(16):7224-33. PubMed ID: 25811909 [TBL] [Abstract][Full Text] [Related]
14. Cooperative grain boundary sliding and migration process in nanocrystalline solids. Bobylev SV; Morozov NF; Ovid'ko IA Phys Rev Lett; 2010 Jul; 105(5):055504. PubMed ID: 20867932 [TBL] [Abstract][Full Text] [Related]
15. Shift of Creep Mechanism in Nanocrystalline NiAl Alloy. Sun Z; Liu B; He C; Xie L; Peng Q Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394760 [TBL] [Abstract][Full Text] [Related]
16. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal. Meraj M; Pal S J Mol Model; 2017 Oct; 23(11):309. PubMed ID: 29018998 [TBL] [Abstract][Full Text] [Related]
17. Dislocation-accommodated grain boundary sliding as the major deformation mechanism of olivine in the Earth's upper mantle. Ohuchi T; Kawazoe T; Higo Y; Funakoshi K; Suzuki A; Kikegawa T; Irifune T Sci Adv; 2015 Oct; 1(9):e1500360. PubMed ID: 26601281 [TBL] [Abstract][Full Text] [Related]
18. Mechanical behavior in the interior and boundary of magnesium aluminate spinel (MgAl Geng H; Du W; Wang H; Li J Appl Opt; 2021 Aug; 60(22):6639-6647. PubMed ID: 34612907 [TBL] [Abstract][Full Text] [Related]
19. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Kobler A; Kashiwar A; Hahn H; Kübel C Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380 [TBL] [Abstract][Full Text] [Related]
20. Quantifying and observing viscoplasticity at the nanoscale: highly localized deformation mechanisms in ultrathin nanocrystalline gold films. Hosseinian E; Legros M; Pierron ON Nanoscale; 2016 Apr; 8(17):9234-44. PubMed ID: 27087395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]