These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21711733)

  • 1. Phase transition on the Si(001) clean surface prepared in UHV MBE chamber: a study by high-resolution STM and in situ RHEED.
    Arapkina LV; Yuryev VA; Chizh KV; Shevlyuga VM; Storojevyh MS; Krylova LA
    Nanoscale Res Lett; 2011 Mar; 6(1):218. PubMed ID: 21711733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the Polarity of the Molecular Beam Epitaxy Grown In-Bi Atomic Film on the Si(111) Surface.
    Lin CY; Hsu CH; Huang YZ; Hsieh SC; Chen HD; Huang L; Huang ZQ; Chuang FC; Lin DS
    Sci Rep; 2019 Jan; 9(1):756. PubMed ID: 30679630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ Control of Si/Ge Growth on Stripe-Patterned Substrates Using Reflection High-Energy Electron Diffraction and Scanning Tunneling Microscopy.
    Sanduijav B; Matei DG; Springholz G
    Nanoscale Res Lett; 2010 Oct; 5(12):1935-41. PubMed ID: 21170141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ge quantum dot arrays grown by ultrahigh vacuum molecular-beam epitaxy on the Si(001) surface: nucleation, morphology, and CMOS compatibility.
    Yuryev VA; Arapkina LV
    Nanoscale Res Lett; 2011 Sep; 6(1):522. PubMed ID: 21892938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Atomic Arrangement of Aluminum Ultra-Thin Layers Grown on Si(111).
    Jum'h I; Abu-Safe HH; Ware ME; Qattan IA; Telfah A; Tavares CJ
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films.
    Roy A; Guchhait S; Dey R; Pramanik T; Hsieh CC; Rai A; Banerjee SK
    ACS Nano; 2015 Apr; 9(4):3772-9. PubMed ID: 25848950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a surface conductivity measurement system for ultrahigh vacuum transmission electron microscope.
    Minoda H; Hatano K; Yazawa H
    Rev Sci Instrum; 2009 Nov; 80(11):113702. PubMed ID: 19947732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.
    Lin W; Foley A; Alam K; Wang K; Liu Y; Chen T; Pak J; Smith AR
    Rev Sci Instrum; 2014 Apr; 85(4):043702. PubMed ID: 24784613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxial Fe3Si films on GaAs(100) substrates by means of electron beam evaporation.
    Thomas J; Schumann J; Vinzelberg H; Arushanov E; Engelhard R; Schmidt OG; Gemming T
    Nanotechnology; 2009 Jun; 20(23):235604. PubMed ID: 19451681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of aligned nanosilicide structures in a MBE-grown Au/Si(110) system: a real-time temperature-dependent TEM study.
    Bhatta UM; Dash JK; Roy A; Rath A; Satyam PV
    J Phys Condens Matter; 2009 May; 21(20):205403. PubMed ID: 21825530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy.
    Yu IS; Chang CP; Yang CP; Lin CT; Ma YR; Chen CC
    Nanoscale Res Lett; 2014; 9(1):682. PubMed ID: 25593560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Effective Approach to Improving Cadmium Telluride (111)A Surface by Molecular-Beam-Epitaxy Growth of Tellurium Monolayer.
    Ren J; Fu L; Bian G; Su J; Zhang H; Velury S; Yukawa R; Zhang L; Wang T; Zha G; Guo R; Miller T; Hasan MZ; Chiang TC
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):726-35. PubMed ID: 26672795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size.
    Schilling M; Ziemann P; Zhang Z; Biskupek J; Kaiser U; Wiedwald U
    Beilstein J Nanotechnol; 2016; 7():591-604. PubMed ID: 27335749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies.
    Sheng S; Li W; Gou J; Cheng P; Chen L; Wu K
    Rev Sci Instrum; 2018 May; 89(5):053107. PubMed ID: 29864859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water.
    Serrano G; Bonanni B; Kosmala T; Di Giovannantonio M; Diebold U; Wandelt K; Goletti C
    Beilstein J Nanotechnol; 2015; 6():438-43. PubMed ID: 25821684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The In situ growth of Nanostructures on Surfaces (INS) endstation of the ESRF BM32 beamline: a combined UHV-CVD and MBE reactor for in situ X-ray scattering investigations of growing nanoparticles and semiconductor nanowires.
    Cantelli V; Geaymond O; Ulrich O; Zhou T; Blanc N; Renaud G
    J Synchrotron Radiat; 2015 May; 22(3):688-700. PubMed ID: 25931085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Structure of TiO
    Balajka J; Aschauer U; Mertens SFL; Selloni A; Schmid M; Diebold U
    J Phys Chem C Nanomater Interfaces; 2017 Nov; 121(47):26424-26431. PubMed ID: 29285204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Placing and imaging individual carbon nanotubes on Cu(111) clean surface using in situ pulsed-jet deposition-STM technique.
    Fukui N; Taninaka A; Sugai T; Yoshida H; Heike S; Fujimori M; Terada Y; Hashizume T; Shinohara H
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4267-71. PubMed ID: 18283802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning tunneling microscopy studies of pulse deposition of dinuclear organometallic molecules on Au(111).
    Guo S; Kandel SA
    J Chem Phys; 2008 Jan; 128(1):014702. PubMed ID: 18190207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Scale Structure of the Hematite α-Fe
    Kraushofer F; Jakub Z; Bichler M; Hulva J; Drmota P; Weinold M; Schmid M; Setvin M; Diebold U; Blaha P; Parkinson GS
    J Phys Chem C Nanomater Interfaces; 2018 Jan; 122(3):1657-1669. PubMed ID: 29492182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.