These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21711733)

  • 21. Structural Stability and Phase Transitions of Octanethiol Self-Assembled Monolayers on Au(111) in Ultrahigh Vacuum.
    Lee NS; Cho G; Shin HK; Noh J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6388-92. PubMed ID: 27427724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlating in situ RHEED and XRD to study growth dynamics of polytypism in nanowires.
    Jakob J; Schroth P; Feigl L; Al Humaidi M; Al Hassan A; Davtyan A; Hauck D; Pietsch U; Baumbach T
    Nanoscale; 2021 Aug; 13(30):13095-13107. PubMed ID: 34477793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface structural sensitivity of convergent-beam RHEED: Si (0 0 1) 2 x 1 models compared with dynamical simulations.
    Zuo JM; Weierstall U; Peng LM; Spence JC
    Ultramicroscopy; 2000 Apr; 81(3-4):235-44. PubMed ID: 10782647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy.
    Zhang S; Huang D; Wu S
    Rev Sci Instrum; 2016 Jun; 87(6):063701. PubMed ID: 27370453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of fast heating electron beam annealing setup for ultra high vacuum chamber.
    Das SC; Majumdar A; Katiyal S; Shripathi T; Hippler R
    Rev Sci Instrum; 2014 Feb; 85(2):025107. PubMed ID: 24593396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous STM and UHV electron microscope observation of silicon nanowires extracted from Si(111) surface.
    Naitoh Y; Takayanagi K; Oshima Y; Hirayama H
    J Electron Microsc (Tokyo); 2000; 49(2):211-6. PubMed ID: 11108043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ReactorSTM: atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions.
    Herbschleb CT; van der Tuijn PC; Roobol SB; Navarro V; Bakker JW; Liu Q; Stoltz D; Cañas-Ventura ME; Verdoes G; van Spronsen MA; Bergman M; Crama L; Taminiau I; Ofitserov A; van Baarle GJ; Frenken JW
    Rev Sci Instrum; 2014 Aug; 85(8):083703. PubMed ID: 25173272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of Ge nanoislands on Si(110)-'16 x 2' surface under thermal annealing studied using STM.
    Gangopadhyay S; Yoshimura M; Ueda K
    Nanotechnology; 2009 Nov; 20(47):475401. PubMed ID: 19875880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenylacetylene one-dimensional nanostructures on the Si(100)-2 x 1:H surface.
    Walsh MA; Walter SR; Bevan KH; Geiger FM; Hersam MC
    J Am Chem Soc; 2010 Mar; 132(9):3013-9. PubMed ID: 20151637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Review: Geometric interpretation of reflection and transmission RHEED patterns.
    Hafez MA; Zayed MK; Elsayed-Ali HE
    Micron; 2022 Aug; 159():103286. PubMed ID: 35700687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral manipulation of single-walled carbon nanotubes on H-passivated Si(100) surfaces with an ultrahigh-vacuum scanning tunneling microscope.
    Albrecht PM; Lyding JW
    Small; 2007 Jan; 3(1):146-52. PubMed ID: 17294486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.
    Sedona F; Rizzi GA; Agnoli S; Llabrés i Xamena FX; Papageorgiou A; Ostermann D; Sambi M; Finetti P; Schierbaum K; Granozzi G
    J Phys Chem B; 2005 Dec; 109(51):24411-26. PubMed ID: 16375442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of azimuthal plots for reflection high-energy positron diffraction (RHEPD) and reflection high-energy electron diffraction (RHEED) for Si(111) surface.
    Mitura Z
    Acta Crystallogr A Found Adv; 2020 May; 76(Pt 3):328-333. PubMed ID: 32356783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An ultrahigh vacuum fast-scanning and variable temperature scanning tunneling microscope for large scale imaging.
    Diaconescu B; Nenchev G; de la Figuera J; Pohl K
    Rev Sci Instrum; 2007 Oct; 78(10):103701. PubMed ID: 17979422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryogen-free modular scanning tunneling microscope operating at 4-K in high magnetic field on a compact ultra-high vacuum platform.
    Coe AM; Li G; Andrei EY
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39105599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of linearly linked Fe clusters on Si(111)-7 × 7-C2H5OH surface.
    Ding W; Ju D; Guo Y; Tanaka K; Komori F
    Nanoscale Res Lett; 2014; 9(1):377. PubMed ID: 25170327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The design and the performance of an ultrahigh vacuum
    Guan SY; Liao HS; Juang BJ; Chin SC; Chuang TM; Chang CS
    Ultramicroscopy; 2019 Jan; 196():180-185. PubMed ID: 30423505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative Surface Studies at Atomic Resolution with Ultrahigh Vacuum Variable-Temperature Atomic Force and Scanning Tunneling Microscopes.
    Iwatsuki M; Suzuki K; Kitamura S; Kersker M
    Microsc Microanal; 1999 May; 5(3):208-215. PubMed ID: 10383993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy.
    Tchernycheva M; Harmand JC; Patriarche G; Travers L; Cirlin GE
    Nanotechnology; 2006 Aug; 17(16):4025-30. PubMed ID: 21727532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scanning tunneling microscopy and spectroscopy of wet-chemically prepared chlorinated Si111 surfaces.
    Cao P; Yu H; Heath JR
    J Phys Chem B; 2006 Nov; 110(47):23615-8. PubMed ID: 17125315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.