These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 21711763)
1. Electron cotunneling through doubly occupied quantum dots: effect of spin configuration. Lan J; Sheng W Nanoscale Res Lett; 2011 Mar; 6(1):251. PubMed ID: 21711763 [TBL] [Abstract][Full Text] [Related]
2. Cotunneling current through a two-level quantum dot coupled to magnetic leads: the role of exchange interaction. Sharafutdinov AU; Burmistrov IS J Phys Condens Matter; 2012 Apr; 24(15):155301. PubMed ID: 22436594 [TBL] [Abstract][Full Text] [Related]
5. Cotunneling current and shot noise in quantum dots. Thielmann A; Hettler MH; König J; Schön G Phys Rev Lett; 2005 Sep; 95(14):146806. PubMed ID: 16241685 [TBL] [Abstract][Full Text] [Related]
6. Electron cotunneling in a semiconductor quantum dot. De Franceschi S; Sasaki S; Elzerman JM; van der Wiel WG; Tarucha S; Kouwenhoven LP Phys Rev Lett; 2001 Jan; 86(5):878-81. PubMed ID: 11177963 [TBL] [Abstract][Full Text] [Related]
7. Pauli spin blockade in a highly tunable silicon double quantum dot. Lai NS; Lim WH; Yang CH; Zwanenburg FA; Coish WA; Qassemi F; Morello A; Dzurak AS Sci Rep; 2011; 1():110. PubMed ID: 22355627 [TBL] [Abstract][Full Text] [Related]
8. Parametric study for optimal performance of Coulomb-coupled quantum dots. Jong KH; Ri SM; Ri CW J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181584 [TBL] [Abstract][Full Text] [Related]
9. Cotunneling-mediated transport through excited states in the Coulomb-blockade regime. Schleser R; Ihn T; Ruh E; Ensslin K; Tews M; Pfannkuche D; Driscoll DC; Gossard AC Phys Rev Lett; 2005 May; 94(20):206805. PubMed ID: 16090270 [TBL] [Abstract][Full Text] [Related]
10. Cotunneling spectroscopy in few-electron quantum dots. Zumbühl DM; Marcus CM; Hanson MP; Gossard AC Phys Rev Lett; 2004 Dec; 93(25):256801. PubMed ID: 15697924 [TBL] [Abstract][Full Text] [Related]
11. Probing entanglement and nonlocality of electrons in a double-dot via transport and noise. Loss D; Sukhorukov EV Phys Rev Lett; 2000 Jan; 84(5):1035-8. PubMed ID: 11017434 [TBL] [Abstract][Full Text] [Related]
13. Zero Field Splitting of Heavy-Hole States in Quantum Dots. Katsaros G; Kukučka J; Vukušić L; Watzinger H; Gao F; Wang T; Zhang JJ; Held K Nano Lett; 2020 Jul; 20(7):5201-5206. PubMed ID: 32479090 [TBL] [Abstract][Full Text] [Related]
14. Unconventional transport in the "hole" regime of a si double quantum dot. Koh TS; Simmons CB; Eriksson MA; Coppersmith SN; Friesen M Phys Rev Lett; 2011 May; 106(18):186801. PubMed ID: 21635116 [TBL] [Abstract][Full Text] [Related]
15. Quantum dot as spin filter and spin memory. Recher P; Sukhorukov EV; Loss D Phys Rev Lett; 2000 Aug; 85(9):1962-5. PubMed ID: 10970658 [TBL] [Abstract][Full Text] [Related]
17. Kondo effect in carbon nanotube quantum dots with spin-orbit coupling. Fang TF; Zuo W; Luo HG Phys Rev Lett; 2008 Dec; 101(24):246805. PubMed ID: 19113647 [TBL] [Abstract][Full Text] [Related]
18. Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots. Avinun-Kalish M; Heiblum M; Zarchin O; Mahalu D; Umansky V Nature; 2005 Jul; 436(7050):529-33. PubMed ID: 16049482 [TBL] [Abstract][Full Text] [Related]
19. Spin fractionalization of an even number of electrons in a quantum Dot. Giuliano D; Tagliacozzo A Phys Rev Lett; 2000 May; 84(20):4677-80. PubMed ID: 10990769 [TBL] [Abstract][Full Text] [Related]
20. Electron and boson clusters in confined geometries: symmetry breaking in quantum dots and harmonic traps. Yannouleas C; Landman U Proc Natl Acad Sci U S A; 2006 Jul; 103(28):10600-5. PubMed ID: 16740665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]