These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 21711781)
1. Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field. Güttinger J; Stampfer C; Frey T; Ihn T; Ensslin K Nanoscale Res Lett; 2011 Mar; 6(1):253. PubMed ID: 21711781 [TBL] [Abstract][Full Text] [Related]
2. Tunable graphene single electron transistor. Stampfer C; Schurtenberger E; Molitor F; Güttinger J; Ihn T; Ensslin K Nano Lett; 2008 Aug; 8(8):2378-83. PubMed ID: 18642958 [TBL] [Abstract][Full Text] [Related]
3. Coulomb Oscillations in a Gate-Controlled Few-Layer Graphene Quantum Dot. Song Y; Xiong H; Jiang W; Zhang H; Xue X; Ma C; Ma Y; Sun L; Wang H; Duan L Nano Lett; 2016 Oct; 16(10):6245-6251. PubMed ID: 27632023 [TBL] [Abstract][Full Text] [Related]
4. Transport through graphene quantum dots. Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122 [TBL] [Abstract][Full Text] [Related]
8. Quantum Hall Effect Measurement of Spin-Orbit Coupling Strengths in Ultraclean Bilayer Graphene/WSe Wang D; Che S; Cao G; Lyu R; Watanabe K; Taniguchi T; Lau CN; Bockrath M Nano Lett; 2019 Oct; 19(10):7028-7034. PubMed ID: 31525877 [TBL] [Abstract][Full Text] [Related]
9. Gate-defined quantum confinement in suspended bilayer graphene. Allen MT; Martin J; Yacoby A Nat Commun; 2012 Jul; 3():934. PubMed ID: 22760633 [TBL] [Abstract][Full Text] [Related]
10. Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field. Máthé L; Grosu I Beilstein J Nanotechnol; 2020; 11():225-239. PubMed ID: 32082962 [No Abstract] [Full Text] [Related]
11. Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings. Freitag NM; Chizhova LA; Nemes-Incze P; Woods CR; Gorbachev RV; Cao Y; Geim AK; Novoselov KS; Burgdörfer J; Libisch F; Morgenstern M Nano Lett; 2016 Sep; 16(9):5798-805. PubMed ID: 27466881 [TBL] [Abstract][Full Text] [Related]
12. Energy spectrum and density of states for a graphene quantum dot in a magnetic field. Horing NJ; Liu SY J Phys Condens Matter; 2010 Jan; 22(2):025502. PubMed ID: 21386256 [TBL] [Abstract][Full Text] [Related]
14. Evidence for formation of multi-quantum dots in hydrogenated graphene. Chuang C; Puddy RK; Connolly MR; Lo ST; Lin HD; Chen TM; Smith CG; Liang CT Nanoscale Res Lett; 2012 Aug; 7(1):459. PubMed ID: 22898058 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the energy spectrum of graphene quantum dot with external magnetic and Aharonov-Bohm flux fields. Serrano Orozco FA; Avalos Ochoa JG; Rivas XC; Cuevas Figueroa JL; Carrada HMM Heliyon; 2019 Aug; 5(8):e02224. PubMed ID: 31440591 [TBL] [Abstract][Full Text] [Related]
16. Aspects of the theory of graphene. Horing NJ Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5525-56. PubMed ID: 21041228 [TBL] [Abstract][Full Text] [Related]
17. Quasi-bound states in an NPN-type nanometer-scale graphene quantum dot under a magnetic field. Pan Y; Ji H; Li XQ; Liu H Sci Rep; 2020 Nov; 10(1):20426. PubMed ID: 33235215 [TBL] [Abstract][Full Text] [Related]
18. Measurement Back-Action in Stacked Graphene Quantum Dots. Bischoff D; Eich M; Zilberberg O; Rössler C; Ihn T; Ensslin K Nano Lett; 2015 Sep; 15(9):6003-8. PubMed ID: 26280388 [TBL] [Abstract][Full Text] [Related]
19. A Mechanically Tunable Quantum Dot in a Graphene Break Junction. Caneva S; Hermans M; Lee M; García-Fuente A; Watanabe K; Taniguchi T; Dekker C; Ferrer J; van der Zant HSJ; Gehring P Nano Lett; 2020 Jul; 20(7):4924-4931. PubMed ID: 32551676 [TBL] [Abstract][Full Text] [Related]