These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21711811)

  • 41. Thermoluminescence and photoluminescence analyses of MEH-PPV, MDMO-PPV and RU(bpy)3 gamma-irradiated polymer thin films.
    Ortiz-Morales A; Ortiz-Lopez J; Cruz-Zaragoza E; Gómez-Aguilar R
    Appl Radiat Isot; 2015 Aug; 102():55-62. PubMed ID: 25980659
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of ZnCdTe-Alloyed Nanocrystals on Polymer-Fullerene Bulk Heterojunction Solar Cells.
    Wang Y; Hou Y; Tang A; Feng Z; Feng B; Li Y; Teng F
    Nanoscale Res Lett; 2009 Mar; 4(7):674-9. PubMed ID: 20596517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resonance Raman studies of excited state structural displacements of conjugated polymers in donor/acceptor charge transfer complexes.
    Wise AJ; Grey JK
    Phys Chem Chem Phys; 2012 Aug; 14(32):11273-6. PubMed ID: 22806396
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of polythiophene/fullerene solar cells.
    Pingree LS; Reid OG; Ginger DS
    Nano Lett; 2009 Aug; 9(8):2946-52. PubMed ID: 19588929
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient exciton funneling in cascaded PbS quantum dot superstructures.
    Xu F; Ma X; Haughn CR; Benavides J; Doty MF; Cloutier SG
    ACS Nano; 2011 Dec; 5(12):9950-7. PubMed ID: 22085035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots.
    Li Y; Zhu J; Huang Y; Wei J; Liu F; Shao Z; Hu L; Chen S; Yang S; Tang J; Yao J; Dai S
    Nanoscale; 2015 Jun; 7(21):9902-7. PubMed ID: 25966784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.
    Wilson MW; Rao A; Ehrler B; Friend RH
    Acc Chem Res; 2013 Jun; 46(6):1330-8. PubMed ID: 23656886
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of the donor polymer on recombination via triplet excitons in a fullerene-free organic solar cell.
    Van Landeghem M; Lenaerts R; Kesters J; Maes W; Goovaerts E
    Phys Chem Chem Phys; 2019 Oct; 21(41):22999-23008. PubMed ID: 31599899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study of interface properties in CuPc based hybrid inorganic-organic solar cells.
    Thalluri GK; Spoltore D; Piersimoni F; Clifford JN; Palomares E; Manca JV
    Dalton Trans; 2012 Oct; 41(37):11419-23. PubMed ID: 22890562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals.
    Gur I; Fromer NA; Chen CP; Kanaras AG; Alivisatos AP
    Nano Lett; 2007 Feb; 7(2):409-14. PubMed ID: 17298008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.
    Zeng Q; Chen Z; Zhao Y; Du X; Liu F; Jin G; Dong F; Zhang H; Yang B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23223-30. PubMed ID: 26436430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lead Halide Perovskite Quantum Dots To Enhance the Power Conversion Efficiency of Organic Solar Cells.
    Guijarro N; Yao L; Le Formal F; Wells RA; Liu Y; Darwich BP; Navratilova L; Cho HH; Yum JH; Sivula K
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12696-12704. PubMed ID: 31328858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices.
    Zhang Y; Wu G; Liu F; Ding C; Zou Z; Shen Q
    Chem Soc Rev; 2020 Jan; 49(1):49-84. PubMed ID: 31825404
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling.
    Yang Z; Janmohamed A; Lan X; García de Arquer FP; Voznyy O; Yassitepe E; Kim GH; Ning Z; Gong X; Comin R; Sargent EH
    Nano Lett; 2015 Nov; 15(11):7539-43. PubMed ID: 26439147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced charge carrier transport properties in colloidal quantum dot solar cells
    Hong J; Hou B; Lim J; Pak S; Kim BS; Cho Y; Lee J; Lee YW; Giraud P; Lee S; Park JB; Morris SM; Snaith HJ; Sohn JI; Cha S; Kim JM
    J Mater Chem A Mater; 2016 Dec; 4(48):18769-18775. PubMed ID: 29308200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Charge Transport Properties of Hybrid Nanocomposites Based on Colloidal PbSe Quantum Dots in Poly(2-methoxy,5-(2'-ethylhexyloxy)-P-Phenylenevinylene (MEH-PPV) Matrix.
    Mehra S; Kumar U; Mehta A; Srivastava AK; Chand S; Sharma SN
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3809-3815. PubMed ID: 31748080
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO
    Hou J; Cao S; Wu Y; Gao Z; Liang F; Sun Y; Lin Z; Sun L
    Chemistry; 2017 Jul; 23(40):9481-9485. PubMed ID: 28516736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices.
    Chen C; Wu F; Geng H; Shen W; Wang M
    Nanoscale Res Lett; 2011 Apr; 6(1):350. PubMed ID: 21711905
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polymer Acceptors Containing B←N Units for Organic Photovoltaics.
    Zhao R; Liu J; Wang L
    Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.