These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21711829)

  • 1. Electromagnetic modeling of waveguide amplifier based on Nd3+ Si-rich SiO2 layers by means of the ADE-FDTD method.
    Dufour C; Cardin J; Debieu O; Fafin A; Gourbilleau F
    Nanoscale Res Lett; 2011 Apr; 6(1):278. PubMed ID: 21711829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the electromagnetic field and level populations in a waveguide amplifier: a multi-scale time problem.
    Fafin A; Cardin J; Dufour C; Gourbilleau F
    Opt Express; 2013 Oct; 21(20):24171-84. PubMed ID: 24104327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of the more suitable rare earth to achieve high gain in waveguide based on silica containing silicon nanograins doped with either Nd³+ or Er³+ ions.
    Fafin A; Cardin J; Dufour C; Gourbilleau F
    Opt Express; 2014 May; 22(10):12296-306. PubMed ID: 24921348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.
    Wang XH; Yin WY; Chen ZZ
    Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic modeling of active silicon nanocrystal waveguides.
    Redding B; Shi S; Creazzo T; Prather DW
    Opt Express; 2008 Jun; 16(12):8792-9. PubMed ID: 18545592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on radiation characteristic of plasma antenna through FDTD method.
    Zhou J; Fang J; Lu Q; Liu F
    ScientificWorldJournal; 2014; 2014():290148. PubMed ID: 25114961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristic analysis of tapered lens fibers for light focusing and butt-coupling to a silicon rib waveguide.
    Yang L; Dai D; Yang B; Sheng Z; He S
    Appl Opt; 2009 Feb; 48(4):672-8. PubMed ID: 19183592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mach-Zehnder Interferometer Biochemical Sensor Based on Silicon-on-Insulator Rib Waveguide with Large Cross Section.
    Yuan D; Dong Y; Liu Y; Li T
    Sensors (Basel); 2015 Aug; 15(9):21500-17. PubMed ID: 26343678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time domain analysis of optical amplification in Er3+ doped SiO2-TiO2 planar waveguide.
    Biallo D; D'Orazio A; De Sario M; Petruzzelli V; Prudenzano F
    Opt Express; 2005 Jun; 13(12):4683-92. PubMed ID: 19495385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of an efficient longitudinal multimode pumping scheme for Si-nc sensitized EDWAs.
    Toccafondo V; Di Pasquale F; Faralli S; Daldosso N; Pavesi L; Hernandez-Figueroa HE
    Opt Express; 2007 Oct; 15(22):14907-13. PubMed ID: 19550769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population inversion and low cooperative upconversion in Er-doped silicon-rich silicon nitride waveguide.
    Chang JS; Kim IY; Sung GY; Shin JH
    Opt Express; 2011 Apr; 19(9):8406-12. PubMed ID: 21643091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.
    Heh DY; Tan EL
    Biomed Opt Express; 2011 Apr; 2(5):1169-83. PubMed ID: 21559129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
    Zhao S
    Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation pressure of active dispersive chiral slabs.
    Wang M; Li H; Gao D; Gao L; Xu J; Qiu CW
    Opt Express; 2015 Jun; 23(13):16546-53. PubMed ID: 26191666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au-Si plasmonic platforms: synthesis, structure and FDTD simulations.
    Gapska A; Łapiński M; Syty P; Sadowski W; Sienkiewicz JE; Kościelska B
    Beilstein J Nanotechnol; 2018; 9():2599-2608. PubMed ID: 30345219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconditionally stable FDTD algorithm for 3-D electromagnetic simulation of nonlinear media.
    Moradi M; Pourangha SM; Nayyeri V; Soleimani M; Ramahi OM
    Opt Express; 2019 May; 27(10):15018-15031. PubMed ID: 31163941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromagnetic simulation of quantum well structures.
    Shi S; Jin G; Prather DW
    Opt Express; 2006 Mar; 14(6):2459-72. PubMed ID: 19503585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate.
    Lin GR; Lian CW; Wu CL; Lin YH
    Opt Express; 2010 Apr; 18(9):9213-9. PubMed ID: 20588768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.
    Papes M; Cheben P; Benedikovic D; Schmid JH; Pond J; Halir R; Ortega-Moñux A; Wangüemert-Pérez G; Ye WN; Xu DX; Janz S; Dado M; Vašinek V
    Opt Express; 2016 Mar; 24(5):5026-5038. PubMed ID: 29092331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.