BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21711865)

  • 21. A highly efficient light capturing 2D (nanosheet)-1D (nanorod) combined hierarchical ZnO nanostructure for efficient quantum dot sensitized solar cells.
    Kim H; Yong K
    Phys Chem Chem Phys; 2013 Feb; 15(6):2109-16. PubMed ID: 23288043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance of colloidal CdS sensitized solar cells with ZnO nanorods/nanoparticles.
    Roy A; Das PP; Tathavadekar M; Das S; Devi PS
    Beilstein J Nanotechnol; 2017; 8():210-221. PubMed ID: 28243559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells.
    Chetia TR; Ansari MS; Qureshi M
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13266-79. PubMed ID: 25966867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficiency Enhancement by Insertion of ZnO Recombination Barrier Layer in CdS Quantum Dot-Sensitized Solar Cells.
    Razzaq A; Zafar M; Saif T; Lee JY; Park JK; Kim WY
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3800-3805. PubMed ID: 33715695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer.
    Chen C; Xie Y; Ali G; Yoo SH; Cho SO
    Nanotechnology; 2011 Jan; 22(1):015202. PubMed ID: 21135453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells.
    Lee W; Kang SH; Kim JY; Kolekar GB; Sung YE; Han SH
    Nanotechnology; 2009 Aug; 20(33):335706. PubMed ID: 19636095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays.
    Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D
    Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device.
    Zeng TW; Liu S; Hsu FC; Huang KT; Liao HC; Su WF
    Opt Express; 2010 Sep; 18 Suppl 3():A357-65. PubMed ID: 21165066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture.
    Zhu Z; Qiu J; Yan K; Yang S
    ACS Appl Mater Interfaces; 2013 May; 5(10):4000-5. PubMed ID: 23618104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer.
    Zhao T; Goodwin ED; Guo J; Wang H; Diroll BT; Murray CB; Kagan CR
    ACS Nano; 2016 Oct; 10(10):9267-9273. PubMed ID: 27649044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selectivity of quantum dot sensitized ZnO nanotube arrays for improved photocatalytic activity.
    Gao G; Xi Q; Zhou H; Zhao Y; Wu C; Wang L; Guo P; Xu J
    Phys Chem Chem Phys; 2017 May; 19(18):11366-11372. PubMed ID: 28421223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of bifunctional linker on the optical properties of ZnO nanocolumn-linker-CdSe quantum dots heterostructure.
    Zeng TW; Liu IS; Huang KT; Liao HC; Chien CT; Wong DK; Chen CW; Wu JJ; Chen YF; Su WF
    J Colloid Interface Sci; 2011 Jun; 358(2):323-8. PubMed ID: 21481891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.
    Kim H; Jeong H; An TK; Park CE; Yong K
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):268-75. PubMed ID: 23231810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible quantum dot sensitized solar cell by electrophoretic deposition of CdSe quantum dots on ZnO nanorods.
    Chen J; Lei W; Li C; Zhang Y; Cui Y; Wang B; Deng W
    Phys Chem Chem Phys; 2011 Aug; 13(29):13182-4. PubMed ID: 21701706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods.
    Lee D; Yong K
    Nanotechnology; 2014 Feb; 25(6):065401. PubMed ID: 24434835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CdS/CdSe quantum dots and ZnPc dye co-sensitized solar cells with Au nanoparticles/graphene oxide as efficient modified layer.
    Chen C; Cheng Y; Jin J; Dai Q; Song H
    J Colloid Interface Sci; 2016 Oct; 480():49-56. PubMed ID: 27399618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PbS Quantum-Dot Depleted Heterojunction Solar Cells Employing CdS Nanorod Arrays as the Electron Acceptor with Enhanced Efficiency.
    Yao X; Liu S; Chang Y; Li G; Mi L; Wang X; Jiang Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23117-23. PubMed ID: 26418344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect.
    Nikam PR; Baviskar PK; Majumder S; Sali JV; Sankapal BR
    J Colloid Interface Sci; 2018 Aug; 524():148-155. PubMed ID: 29649623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.