BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 21711960)

  • 41. Effects of simulated bleeding in an in vitro nasal fibroblast wound healing model.
    Beule AG; Athanasiadis T; Field J; Hosemann W; Wormald PJ; Tan LW
    Am J Rhinol Allergy; 2010; 24(3):186-91. PubMed ID: 20537284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis.
    Shin HW; Kim DK; Park MH; Eun KM; Lee M; So D; Kong IG; Mo JH; Yang MS; Jin HR; Park JW; Kim DW
    J Allergy Clin Immunol; 2015 Jun; 135(6):1476-85.e7. PubMed ID: 25725991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chronic rhinosinusitis with nasal polyps is associated with decreased expression of mucosal interleukin 22 receptor.
    Ramanathan M; Spannhake EW; Lane AP
    Laryngoscope; 2007 Oct; 117(10):1839-43. PubMed ID: 17906500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Up-regulation of the mucosal epidermal growth factor receptor gene in chronic rhinosinusitis and nasal polyposis.
    Ding GQ; Zheng CQ; Bagga SS
    Arch Otolaryngol Head Neck Surg; 2007 Nov; 133(11):1097-103. PubMed ID: 18025312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chronic sinusitis and rhinitis: clinical terminology "Chronic Rhinosinusitis" further supported.
    Van Crombruggen K; Van Bruaene N; Holtappels G; Bachert C
    Rhinology; 2010 Mar; 48(1):54-8. PubMed ID: 20502736
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Downregulation of polymeric immunoglobulin receptor and secretory IgA antibodies in eosinophilic upper airway diseases.
    Hupin C; Rombaux P; Bowen H; Gould H; Lecocq M; Pilette C
    Allergy; 2013 Dec; 68(12):1589-97. PubMed ID: 24117840
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Progress of tissue injury in appendicitis involves the serine proteases uPA and PAI-1.
    Solberg A; Holmdahl L; Falk P; Willén R; Palmgren I; Ivarsson ML
    Scand J Gastroenterol; 2009; 44(5):579-84. PubMed ID: 19153874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Higher levels of urokinase plasminogen activator system components in the airways of chronic obstructive pulmonary disease patients].
    Xiao W; Tong WL; Ma DD
    Zhonghua Jie He He Hu Xi Za Zhi; 2006 Nov; 29(11):723-6. PubMed ID: 17327049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Superantigens and the expression of T-cell receptor repertoire in chronic rhinosinusitis with nasal polyps.
    Wang M; Shi P; Yue Z; Chen B; Zhang H; Zhang D; Wang H
    Acta Otolaryngol; 2008 Aug; 128(8):901-8. PubMed ID: 18607886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The antimicrobial protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is differentially modulated in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps.
    Wei Y; Xia W; Ye X; Fan Y; Shi J; Wen W; Yang P; Li H;
    J Allergy Clin Immunol; 2014 Feb; 133(2):420-8. PubMed ID: 24342548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasminogen activator system in oral squamous cell carcinoma.
    Baker EA; Leaper DJ; Hayter JP; Dickenson AJ
    Br J Oral Maxillofac Surg; 2007 Dec; 45(8):623-7. PubMed ID: 17590247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential Expression of the Aryl Hydrocarbon Receptor and Transforming Growth Factor Beta 1 in Chronic Rhinosinusitis with Nasal Polyps with Allergic Rhinitis.
    Chen L; Xiao L; Liu J; Shen Y; Ke X; Huang J; Hu G; Yang Y
    ORL J Otorhinolaryngol Relat Spec; 2017; 79(6):295-305. PubMed ID: 29183012
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nasal biomarker profiles in acute and chronic rhinosinusitis.
    Riechelmann H; Deutschle T; Rozsasi A; Keck T; Polzehl D; Bürner H
    Clin Exp Allergy; 2005 Sep; 35(9):1186-91. PubMed ID: 16164446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis.
    Krysko O; Holtappels G; Zhang N; Kubica M; Deswarte K; Derycke L; Claeys S; Hammad H; Brusselle GG; Vandenabeele P; Krysko DV; Bachert C
    Allergy; 2011 Mar; 66(3):396-403. PubMed ID: 20973804
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation and expression of IL-32 in chronic rhinosinusitis.
    Soyka MB; Treis A; Eiwegger T; Menz G; Zhang S; Holzmann D; Akdis CA; Meyer N
    Allergy; 2012 Jun; 67(6):790-8. PubMed ID: 22486709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nasal interleukin-5, immunoglobulin E, eosinophilic cationic protein, and soluble intercellular adhesion molecule-1 in chronic sinusitis, allergic rhinitis, and nasal polyposis.
    Kramer MF; Ostertag P; Pfrogner E; Rasp G
    Laryngoscope; 2000 Jun; 110(6):1056-62. PubMed ID: 10852530
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activations of group 2 innate lymphoid cells depend on endotypes of chronic rhinosinusitis.
    Lin L; Wei J; Chen Z; Tang X; Dai F; Sun G
    Eur Arch Otorhinolaryngol; 2018 Dec; 275(12):3007-3016. PubMed ID: 30357493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased expression of angiogenin in nasal polyps.
    Hwang KS; Park IH; Choi H; Lee SH; Lee SH; Lee HM
    Am J Rhinol Allergy; 2011; 25(1):e23-6. PubMed ID: 21711968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis.
    Lu X; Wang N; Long XB; You XJ; Cui YH; Liu Z
    Respir Res; 2011 Mar; 12(1):28. PubMed ID: 21385388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased exhaled nitric oxide and its oxidation metabolism in eosinophilic chronic rhinosinusitis.
    Takeno S; Taruya T; Ueda T; Noda N; Hirakawa K
    Auris Nasus Larynx; 2013 Oct; 40(5):458-64. PubMed ID: 23489830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.