These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21712033)

  • 21. Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genome-wide mutant library.
    Molina-Henares MA; de la Torre J; García-Salamanca A; Molina-Henares AJ; Herrera MC; Ramos JL; Duque E
    Environ Microbiol; 2010 Jun; 12(6):1468-85. PubMed ID: 20158506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1.
    Oberhardt MA; Puchałka J; Fryer KE; Martins dos Santos VA; Papin JA
    J Bacteriol; 2008 Apr; 190(8):2790-803. PubMed ID: 18192387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular detection of alpha-glucosidase inhibitor-producing actinomycetes.
    Hyun CG; Kim SY; Hur JH; Seo MJ; Suh JW; Kim SO
    J Microbiol; 2005 Jun; 43(3):313-8. PubMed ID: 15995652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodiscovery from rare actinomycetes: an eco-taxonomical perspective.
    Kurtböke DI
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):1843-52. PubMed ID: 22297430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparing metabolic network models based on genomic and automatically inferred enzyme information from Plasmodium and its human host to define drug targets in silico.
    Fatumo S; Plaimas K; Adebiyi E; König R
    Infect Genet Evol; 2011 Jun; 11(4):708-15. PubMed ID: 21515412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico.
    Fatumo S; Plaimas K; Mallm JP; Schramm G; Adebiyi E; Oswald M; Eils R; König R
    Infect Genet Evol; 2009 May; 9(3):351-8. PubMed ID: 18313365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D.
    Shtratnikova VY; Schelkunov MI; Fokina VV; Pekov YA; Ivashina T; Donova MV
    Curr Genet; 2016 Aug; 62(3):643-56. PubMed ID: 26832142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic assignment of thermodynamic constraints in metabolic network models.
    Kümmel A; Panke S; Heinemann M
    BMC Bioinformatics; 2006 Nov; 7():512. PubMed ID: 17123434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis.
    Schilling CH; Palsson BO
    J Theor Biol; 2000 Apr; 203(3):249-83. PubMed ID: 10716908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the differences in metabolic network expansion between prokaryotes and eukaryotes.
    Tanaka M; Yamada T; Itoh M; Okuda S; Goto S; Kanehisa M
    Genome Inform; 2006; 17(1):230-9. PubMed ID: 17503372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network.
    Perumal D; Samal A; Sakharkar KR; Sakharkar MK
    J Drug Target; 2011 Jan; 19(1):1-13. PubMed ID: 20233082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of genome-scale microbial models for metabolic engineering.
    Patil KR; Akesson M; Nielsen J
    Curr Opin Biotechnol; 2004 Feb; 15(1):64-9. PubMed ID: 15102469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants.
    Less H; Angelovici R; Tzin V; Galili G
    Amino Acids; 2010 Oct; 39(4):1023-8. PubMed ID: 20364431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An integrative approach towards completing genome-scale metabolic networks.
    Christian N; May P; Kempa S; Handorf T; Ebenhöh O
    Mol Biosyst; 2009 Dec; 5(12):1889-903. PubMed ID: 19763335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Terpenoids are widespread in actinomycetes: a correlation of secondary metabolism and genome data.
    Citron CA; Gleitzmann J; Laurenzano G; Pukall R; Dickschat JS
    Chembiochem; 2012 Jan; 13(2):202-14. PubMed ID: 22213220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frontiers in metabolic reconstruction and modeling of plant genomes.
    Seaver SM; Henry CS; Hanson AD
    J Exp Bot; 2012 Mar; 63(6):2247-58. PubMed ID: 22238452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural analyses of a hypothetical minimal metabolism.
    Gabaldón T; Peretó J; Montero F; Gil R; Latorre A; Moya A
    Philos Trans R Soc Lond B Biol Sci; 2007 Oct; 362(1486):1751-62. PubMed ID: 17510022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consistency analysis of metabolic correlation networks.
    Müller-Linow M; Weckwerth W; Hütt MT
    BMC Syst Biol; 2007 Sep; 1():44. PubMed ID: 17892579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Gene networks that regulate secondary metabolism in actinomycetes: pleiotropic regulators].
    Rabyk MV; Ostash BO; Fedorenko VO
    Tsitol Genet; 2014; 48(1):67--82. PubMed ID: 24791475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A hierarchical model of metabolic machinery based on the kcore decomposition of plant metabolic networks.
    Filho HA; Machicao J; Bruno OM
    PLoS One; 2018; 13(5):e0195843. PubMed ID: 29734359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.