These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21712150)

  • 1. Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life.
    Gyllensten IC; Bonomi AG
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2656-63. PubMed ID: 21712150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical activity classification using the GENEA wrist-worn accelerometer.
    Zhang S; Rowlands AV; Murray P; Hurst TL
    Med Sci Sports Exerc; 2012 Apr; 44(4):742-8. PubMed ID: 21988935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature selection and activity recognition system using a single triaxial accelerometer.
    Gupta P; Dallas T
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity classification using a single chest mounted tri-axial accelerometer.
    Godfrey A; Bourke AK; Olaighin GM; van de Ven P; Nelson J
    Med Eng Phys; 2011 Nov; 33(9):1127-35. PubMed ID: 21636308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of type, duration, and intensity of physical activity using an accelerometer.
    Bonomi AG; Goris AH; Yin B; Westerterp KR
    Med Sci Sports Exerc; 2009 Sep; 41(9):1770-7. PubMed ID: 19657292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A description of an accelerometer-based mobility monitoring technique.
    Lyons GM; Culhane KM; Hilton D; Grace PA; Lyons D
    Med Eng Phys; 2005 Jul; 27(6):497-504. PubMed ID: 15990066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.
    Ohkawara K; Oshima Y; Hikihara Y; Ishikawa-Takata K; Tabata I; Tanaka S
    Br J Nutr; 2011 Jun; 105(11):1681-91. PubMed ID: 21262061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors.
    Wang Z; Jiang M; Hu Y; Li H
    IEEE Trans Inf Technol Biomed; 2012 Jul; 16(4):691-9. PubMed ID: 22614724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP; Neumann M; Béziat A; Chen KY
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of children's activity type with accelerometer-based neural networks.
    de Vries SI; Engels M; Garre FG
    Med Sci Sports Exerc; 2011 Oct; 43(10):1994-9. PubMed ID: 21448085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifying household and locomotive activities using a triaxial accelerometer.
    Oshima Y; Kawaguchi K; Tanaka S; Ohkawara K; Hikihara Y; Ishikawa-Takata K; Tabata I
    Gait Posture; 2010 Mar; 31(3):370-4. PubMed ID: 20138524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisensor data fusion for physical activity assessment.
    Liu S; Gao RX; John D; Staudenmayer JW; Freedson PS
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):687-96. PubMed ID: 22156943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor.
    Nam Y; Park JW
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):420-6. PubMed ID: 24235114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.
    Godfrey A; Culhane KM; Lyons GM
    Med Eng Phys; 2007 Oct; 29(8):930-4. PubMed ID: 17134934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SoM: a smart sensor for human activity monitoring and assisted healthy ageing.
    Naranjo-Hernández D; Roa LM; Reina-Tosina J; Estudillo-Valderrama MÁ
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3177-84. PubMed ID: 23086195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.