These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 21712155)

  • 21. An integrative approach to understanding mechanosensation.
    Poirier CC; Iglesias PA
    Brief Bioinform; 2007 Jul; 8(4):258-65. PubMed ID: 17591637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apoptotic cell death and rupture of abdominal aortic aneurysm.
    Kovacevic M; Jonjic N; Stalekar H; Zaputovic L; Stifter S; Vitezic D
    Med Hypotheses; 2010 May; 74(5):908-10. PubMed ID: 19896778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model--a report on the Virtual Intracranial Stenting Challenge 2007.
    Radaelli AG; Augsburger L; Cebral JR; Ohta M; Rüfenacht DA; Balossino R; Benndorf G; Hose DR; Marzo A; Metcalfe R; Mortier P; Mut F; Reymond P; Socci L; Verhegghe B; Frangi AF
    J Biomech; 2008 Jul; 41(10):2069-81. PubMed ID: 18582891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Experimental studies on the cause of death by rupture of an aneurysm of the circle of Willis. I. Observation on the subarachnoid blood volume, distribution pattern of the blood and change of small arteries of the brain stem in cases of sudden death].
    Takamatsu H
    Sapporo Igaku Zasshi; 1967 Dec; 32(6):307-25. PubMed ID: 5628519
    [No Abstract]   [Full Text] [Related]  

  • 25. [Biomechanics of intracranial aneurysms].
    Farkas I; Nyáry I; Raffai G; Zilahy G; Monos E
    Ideggyogy Sz; 2006 Nov; 59(11-12):428-32. PubMed ID: 17203879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples.
    Watton PN; Raberger NB; Holzapfel GA; Ventikos Y
    J Biomech Eng; 2009 Oct; 131(10):101003. PubMed ID: 19831473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational fluid dynamics simulations of intracranial aneurysms at varying heart rates: a "patient-specific" study.
    Jiang J; Strother C
    J Biomech Eng; 2009 Sep; 131(9):091001. PubMed ID: 19725690
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms.
    Watton PN; Selimovic A; Raberger NB; Huang P; Holzapfel GA; Ventikos Y
    Biomech Model Mechanobiol; 2011 Feb; 10(1):109-32. PubMed ID: 20496095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Immunomorphological aspects of formation of an intracranial aneurysm].
    Shishkina LV; Vikhert TM; Lazarev VA
    Zh Vopr Neirokhir Im N N Burdenko; 2001; (4):22-5. PubMed ID: 11878214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nonlinear biomathematical model for the study of intracranial aneurysms.
    Nieto JJ; Torres A
    J Neurol Sci; 2000 Aug; 177(1):18-23. PubMed ID: 10967178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current Understanding of the Molecular Mechanism between Hemodynamic- Induced Intracranial Aneurysm and Inflammation.
    Tang H; Luo Y; Zuo Q; Wang C; Huang Q; Zhao R; Liu J
    Curr Protein Pept Sci; 2019; 20(8):789-798. PubMed ID: 31060483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular and molecular structure as a unifying framework for whole-cell modeling.
    Roberts E
    Curr Opin Struct Biol; 2014 Apr; 25():86-91. PubMed ID: 24509245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fully coupled space-time multiscale modeling framework for predicting tumor growth.
    Rahman MM; Feng Y; Yankeelov TE; Oden JT
    Comput Methods Appl Mech Eng; 2017 Jun; 320():261-286. PubMed ID: 29158608
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiscale modeling methods in biomechanics.
    Bhattacharya P; Viceconti M
    Wiley Interdiscip Rev Syst Biol Med; 2017 May; 9(3):. PubMed ID: 28102563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the constancy of intracranial aneurysm growth rates.
    Britz G; Winn HR
    J Neurosurg; 2008 Aug; 109(2):173-4; discussion 174-5. PubMed ID: 18671626
    [No Abstract]   [Full Text] [Related]  

  • 37. Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams.
    Saye RI; Sethian JA
    Science; 2013 May; 340(6133):720-4. PubMed ID: 23661755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiscale models of cell signaling.
    Bajikar SS; Janes KA
    Ann Biomed Eng; 2012 Nov; 40(11):2319-27. PubMed ID: 22476894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using CellML in computational models of multiscale physiology.
    Nickerson D; Hunter P
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():6096-9. PubMed ID: 17281654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale modeling in disease.
    Ford Versypt AN
    Curr Opin Syst Biol; 2021 Sep; 27():. PubMed ID: 35310906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.