These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 21712434)
21. Mechanistic Modeling of Empagliflozin: Predicting Pharmacokinetics, Urinary Glucose Excretion, and Investigating Compensatory Role of SGLT1 in Renal Glucose Reabsorption. Ping X; Wang G; Gao D J Clin Pharmacol; 2024 Jun; 64(6):672-684. PubMed ID: 38363006 [TBL] [Abstract][Full Text] [Related]
22. Identification of phlorizin binding domains in sodium-glucose cotransporter family: SGLT1 as a unique model system. Raja M; Kinne RK Biochimie; 2015 Aug; 115():187-93. PubMed ID: 26086341 [TBL] [Abstract][Full Text] [Related]
23. Potent Sodium/Glucose Cotransporter SGLT1/2 Dual Inhibition Improves Glycemic Control Without Marked Gastrointestinal Adaptation or Colonic Microbiota Changes in Rodents. Du F; Hinke SA; Cavanaugh C; Polidori D; Wallace N; Kirchner T; Jennis M; Lang W; Kuo GH; Gaul MD; Lenhard J; Demarest K; Ajami NJ; Liang Y; Hornby PJ J Pharmacol Exp Ther; 2018 Jun; 365(3):676-687. PubMed ID: 29674332 [TBL] [Abstract][Full Text] [Related]
24. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Ferté L; Marino A; Battault S; Bultot L; Van Steenbergen A; Bol A; Cumps J; Ginion A; Koepsell H; Dumoutier L; Hue L; Horman S; Bertrand L; Beauloye C Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H838-H853. PubMed ID: 33416451 [TBL] [Abstract][Full Text] [Related]
25. Exploring newer target sodium glucose transporter 2 for the treatment of diabetes mellitus. Vaidya HB; Goyal RK Mini Rev Med Chem; 2010 Sep; 10(10):905-13. PubMed ID: 21034414 [TBL] [Abstract][Full Text] [Related]
26. Physiologically based pharmacokinetic-pharmacodynamic modeling to predict concentrations and actions of sodium-dependent glucose transporter 2 inhibitor canagliflozin in human intestines and renal tubules. Mori K; Saito R; Nakamaru Y; Shimizu M; Yamazaki H Biopharm Drug Dispos; 2016 Nov; 37(8):491-506. PubMed ID: 27604638 [TBL] [Abstract][Full Text] [Related]
27. A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Castaneda F; Kinne RK Mol Cell Biochem; 2005 Dec; 280(1-2):91-8. PubMed ID: 16311909 [TBL] [Abstract][Full Text] [Related]
28. Sodium-Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport: From Bench to Bedside. Mudaliar S; Polidori D; Zambrowicz B; Henry RR Diabetes Care; 2015 Dec; 38(12):2344-53. PubMed ID: 26604280 [TBL] [Abstract][Full Text] [Related]
29. In Vitro Pharmacological Profile of Ipragliflozin, a Sodium Glucose Co-transporter 2 Inhibitor. Takasu T; Yokono M; Tahara A; Takakura S Biol Pharm Bull; 2019; 42(3):507-511. PubMed ID: 30828082 [TBL] [Abstract][Full Text] [Related]
30. SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Han Y; Cho YE; Ayon R; Guo R; Youssef KD; Pan M; Dai A; Yuan JX; Makino A Am J Physiol Lung Cell Mol Physiol; 2015 Nov; 309(9):L1027-36. PubMed ID: 26361875 [TBL] [Abstract][Full Text] [Related]
31. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Rieg T; Masuda T; Gerasimova M; Mayoux E; Platt K; Powell DR; Thomson SC; Koepsell H; Vallon V Am J Physiol Renal Physiol; 2014 Jan; 306(2):F188-93. PubMed ID: 24226519 [TBL] [Abstract][Full Text] [Related]
32. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Ghezzi C; Loo DDF; Wright EM Diabetologia; 2018 Oct; 61(10):2087-2097. PubMed ID: 30132032 [TBL] [Abstract][Full Text] [Related]
33. Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 inhibitor Canagliflozin with SGLT1 and SGLT2. Ohgaki R; Wei L; Yamada K; Hara T; Kuriyama C; Okuda S; Ueta K; Shiotani M; Nagamori S; Kanai Y J Pharmacol Exp Ther; 2016 Jul; 358(1):94-102. PubMed ID: 27189972 [TBL] [Abstract][Full Text] [Related]
34. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Hummel CS; Lu C; Loo DD; Hirayama BA; Voss AA; Wright EM Am J Physiol Cell Physiol; 2011 Jan; 300(1):C14-21. PubMed ID: 20980548 [TBL] [Abstract][Full Text] [Related]
35. Model-Based Evaluation of Proximal Sodium Reabsorption Through SGLT2 in Health and Diabetes and the Effect of Inhibition With Canagliflozin. Brady JA; Hallow KM J Clin Pharmacol; 2018 Mar; 58(3):377-385. PubMed ID: 29144539 [TBL] [Abstract][Full Text] [Related]
36. [Role of the kidneys in glucose homeostasis. Implication of sodium-glucose cotransporter 2 (SGLT2) in diabetes mellitus treatment]. Girard J Nephrol Ther; 2017 Apr; 13 Suppl 1():S35-S41. PubMed ID: 28577741 [TBL] [Abstract][Full Text] [Related]
37. Effects of phlorizin on glucose, water and sodium handling by the rat kidney. Bishop JH; Elegbe R; Green R; Thomas S J Physiol; 1978 Feb; 275():467-80. PubMed ID: 633141 [TBL] [Abstract][Full Text] [Related]
38. A selectivity study of sodium-dependent glucose cotransporter 2/sodium-dependent glucose cotransporter 1 inhibitors by molecular modeling. Xu J; Yuan H; Ran T; Zhang Y; Liu H; Lu S; Xiong X; Xu A; Jiang Y; Lu T; Chen Y J Mol Recognit; 2015 Aug; 28(8):467-79. PubMed ID: 25753971 [TBL] [Abstract][Full Text] [Related]
39. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and Diabetic Rodents. Oguma T; Nakayama K; Kuriyama C; Matsushita Y; Yoshida K; Hikida K; Obokata N; Tsuda-Tsukimoto M; Saito A; Arakawa K; Ueta K; Shiotani M J Pharmacol Exp Ther; 2015 Sep; 354(3):279-89. PubMed ID: 26105952 [TBL] [Abstract][Full Text] [Related]
40. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. Grempler R; Augustin R; Froehner S; Hildebrandt T; Simon E; Mark M; Eickelmann P FEBS Lett; 2012 Feb; 586(3):248-53. PubMed ID: 22212718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]