These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21712577)

  • 1. Daily, monthly, seasonal, and annual ammonia emissions from Southern High Plains cattle feedyards.
    Todd RW; Cole NA; Rhoades MB; Parker DB; Casey KD
    J Environ Qual; 2011; 40(4):1090-5. PubMed ID: 21712577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing crude protein in beef cattle diet reduces ammonia emissions from artificial feedyard surfaces.
    Todd RW; Cole NA; Clark RN
    J Environ Qual; 2006; 35(2):404-11. PubMed ID: 16455840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary crude protein and tannin impact dairy manure chemistry and ammonia emissions from incubated soils.
    Powell JM; Aguerre MJ; Wattiaux MA
    J Environ Qual; 2011; 40(6):1767-74. PubMed ID: 22031559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Season and bedding impacts on ammonia emissions from tie-stall dairy barns.
    Powell JM; Misselbrook TH; Casler MD
    J Environ Qual; 2008; 37(1):7-15. PubMed ID: 18178873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arrhenius equation for modeling feedyard ammonia emissions using temperature and diet crude protein.
    Todd RW; Cole NA; Waldrip HM; Aiken RM
    J Environ Qual; 2013; 42(3):666-71. PubMed ID: 23673932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process-based Modeling of Ammonia Emission from Beef Cattle Feedyards with the Integrated Farm Systems Model.
    Waldrip HM; Rotz CA; Hafner SD; Todd RW; Cole NA
    J Environ Qual; 2014 Jul; 43(4):1159-68. PubMed ID: 25603064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal diet affects ammonia emissions from tie-stall dairy barns.
    Powell JM; Broderick GA; Misselbrook TH
    J Dairy Sci; 2008 Feb; 91(2):857-69. PubMed ID: 18218774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane Emissions from a Beef Cattle Feedyard during Winter and Summer on the Southern High Plains of Texas.
    Todd RW; Altman MB; Cole NA; Waldrip HM
    J Environ Qual; 2014 Jul; 43(4):1125-30. PubMed ID: 25603061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of scraping frequency in a freestall barn on volatile nitrogen loss from dairy manure.
    Moreira VR; Satter LD
    J Dairy Sci; 2006 Jul; 89(7):2579-87. PubMed ID: 16772577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems.
    Leytem AB; Dungan RS; Bjorneberg DL; Koehn AC
    J Environ Qual; 2011; 40(5):1383-94. PubMed ID: 21869500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emissions of ammonia, nitrous oxide, methane, and carbon dioxide during storage of dairy cow manure as affected by dietary forage-to-concentrate ratio and crust formation.
    Aguerre MJ; Wattiaux MA; Powell JM
    J Dairy Sci; 2012 Dec; 95(12):7409-16. PubMed ID: 23021756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrogen content and additional straw on changes in chemical composition, volatile losses, and ammonia emissions from dairy manure during long-term storage.
    Aguerre MJ; Wattiaux MA; Hunt T; Lobos NE
    J Dairy Sci; 2012 Jun; 95(6):3454-66. PubMed ID: 22612981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A whole-farm strategy to reduce environmental impacts of nitrogen.
    Sonneveld MP; Schröder JJ; de Vos JA; Monteny GJ; Mosquera J; Hol JM; Lantinga EA; Verhoeven FP; Bouma J
    J Environ Qual; 2008; 37(1):186-95. PubMed ID: 18178892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: relation of milk urea nitrogen to ammonia emissions.
    Burgos SA; Embertson NM; Zhao Y; Mitloehner FM; DePeters EJ; Fadel JG
    J Dairy Sci; 2010 Jun; 93(6):2377-86. PubMed ID: 20494146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric nitrogen inputs to the Delaware Inland Bays: the role of ammonia.
    Scudlark JR; Jennings JA; Roadman MJ; Savidge KB; Ullman WJ
    Environ Pollut; 2005 Jun; 135(3):433-43. PubMed ID: 15749541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of GHG and ammonia emissions from stored dairy cattle slurry by using a floating dynamic chamber.
    Minato K; Kouda Y; Yamakawa M; Hara S; Tamura T; Osada T
    Anim Sci J; 2013 Feb; 84(2):165-77. PubMed ID: 23384359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying ammonia emissions from a cattle feedlot using a dispersion model.
    McGinn SM; Flesch TK; Crenna BP; Beauchemin KA; Coates T
    J Environ Qual; 2007; 36(6):1585-90. PubMed ID: 17940257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of oscillating dietary protein concentrations on finishing cattle. II. Nutrient retention and ammonia emissions.
    Archibeque SL; Freetly HC; Cole NA; Ferrell CL
    J Anim Sci; 2007 Jun; 85(6):1496-503. PubMed ID: 17264236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrous Oxide Emissions from Open-Lot Cattle Feedyards: A Review.
    Waldrip HM; Todd RW; Parker DB; Cole NA; Rotz CA; Casey KD
    J Environ Qual; 2016 Nov; 45(6):1797-1811. PubMed ID: 27898789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary crude protein modification on ammonia and nitrous oxide concentration on a tie-stall dairy barn floor.
    Arriaga H; Salcedo G; Martínez-Suller L; Calsamiglia S; Merino P
    J Dairy Sci; 2010 Jul; 93(7):3158-65. PubMed ID: 20630233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.