These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21712594)

  • 21. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading.
    Stutter MI; Demars BO; Langan SJ
    Water Res; 2010 Aug; 44(15):4425-36. PubMed ID: 20619439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorus transport through subsurface drainage and surface runoff from a flat watershed in east central Illinois, USA.
    Algoazany AS; Kalita PK; Czapar GF; Mitchell JK
    J Environ Qual; 2007; 36(3):681-93. PubMed ID: 17412904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical analysis of trends in organic pollution and pollution by nutrients at selected Danube river stations.
    Jaruskova D; Liska I
    J Environ Monit; 2011 May; 13(5):1435-45. PubMed ID: 21465035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of policy-induced measures on suspended sediments and total phosphorus concentrations from three Norwegian agricultural catchments.
    Bechmann M; Stålnacke P
    Sci Total Environ; 2005 May; 344(1-3):129-42. PubMed ID: 15907514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trends in concentrations and use of agricultural herbicides for Corn Belt rivers, 1996-2006.
    Vecchia AV; Gilliom RJ; Sullivan DJ; Lorenz DL; Martin JD
    Environ Sci Technol; 2009 Dec; 43(24):9096-102. PubMed ID: 20000498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defining the sources of low-flow phosphorus transfers in complex catchments.
    Arnscheidt J; Jordan P; Li S; McCormick S; McFaul R; McGrogan HJ; Neal M; Sims JT
    Sci Total Environ; 2007 Aug; 382(1):1-13. PubMed ID: 17512972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Considerations on the influence of extreme events on the phosphorus transport from river catchments to the sea.
    Zessner M; Postolache C; Clement A; Kovacs A; Strauss P
    Water Sci Technol; 2005; 51(11):193-204. PubMed ID: 16114633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of phosphorus sources in rural watersheds.
    Withers PJ; Jarvie HP; Hodgkinson RA; Palmer-Felgate EJ; Bates A; Neal M; Howells R; Withers CM; Wickham HD
    J Environ Qual; 2009; 38(5):1998-2011. PubMed ID: 19704143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2020s scenario analysis of nutrient load in the Mekong River Basin using a distributed hydrological model.
    Yoshimura C; Zhou M; Kiem AS; Fukami K; Prasantha HH; Ishidaira H; Takeuchi K
    Sci Total Environ; 2009 Oct; 407(20):5356-66. PubMed ID: 19625073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois.
    Wilson CO; Weng Q
    Sci Total Environ; 2011 Sep; 409(20):4387-405. PubMed ID: 21835439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The water quality of the River Thame in the Thames Basin of south/south-eastern England.
    Neal C; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 May; 360(1-3):254-71. PubMed ID: 16253309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube.
    Zoboli O; Viglione A; Rechberger H; Zessner M
    Sci Total Environ; 2015 Jun; 518-519():117-29. PubMed ID: 25747371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of phosphorus concentrations in relation to annual and seasonal physico-chemical water quality parameters in a UK chalk stream.
    Hanrahan G; Gledhill M; House WA; Worsfold PJ
    Water Res; 2003 Sep; 37(15):3579-89. PubMed ID: 12867324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial analysis of water quality trends in the Han River basin, South Korea.
    Chang H
    Water Res; 2008 Jul; 42(13):3285-304. PubMed ID: 18490047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An approach for assessing cumulative effects in a model river, the Athabasca River basin.
    Squires AJ; Westbrook CJ; Dubé M
    Integr Environ Assess Manag; 2010 Jan; 6(1):119-34. PubMed ID: 19558197
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Bivariate statistical model for calculating phosphorus input loads to the river from point and nonpoint sources].
    Chen DJ; Sun SY; Jia YN; Chen JB; Lü J
    Huan Jing Ke Xue; 2013 Jan; 34(1):84-90. PubMed ID: 23487922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorus concentrations, loads, and sources within the Illinois River drainage area, northwest Arkansas, 1997-2008.
    Haggard BE
    J Environ Qual; 2010; 39(6):2113-20. PubMed ID: 21284309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A spatial analysis of phosphorus in the Mississippi river basin.
    Jacobson LM; David MB; Drinkwater LE
    J Environ Qual; 2011; 40(3):931-41. PubMed ID: 21546679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorus retention patterns along the Tisza River, Hungary.
    Kovács A; Kozma Z; Istvánovics V; Honti M
    Water Sci Technol; 2009; 59(2):391-7. PubMed ID: 19182352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of chlorophyll-a as a criterion for establishing nutrient standards in the streams and rivers of Illinois.
    Royer TV; David MB; Gentry LE; Mitchell CA; Starks KM; Heatherly T; Whiles MR
    J Environ Qual; 2008; 37(2):437-47. PubMed ID: 18268307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.