These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21713636)

  • 1. Dried and hydrated X-ray scattering analysis of amyloid fibrils.
    Gras SL; Squires AM
    Methods Mol Biol; 2011; 752():147-63. PubMed ID: 21713636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray scattering study of the effect of hydration on the cross-beta structure of amyloid fibrils.
    Squires AM; Devlin GL; Gras SL; Tickler AK; MacPhee CE; Dobson CM
    J Am Chem Soc; 2006 Sep; 128(36):11738-9. PubMed ID: 16953596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fibrils of Ure2p homologs from Saccharomyces cerevisiae and Saccharoymyces paradoxus have similar cross-β structure in both dried and hydrated forms.
    Wang YQ; Bongiovanni M; Gras SL; Perrett S
    J Struct Biol; 2011 Jun; 174(3):505-11. PubMed ID: 21419850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of prefibrillar intermediates and amyloid fibrils by small-angle X-ray scattering.
    Langkilde AE; Vestergaard B
    Methods Mol Biol; 2012; 849():137-55. PubMed ID: 22528088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cylinder-shaped double ribbon structure formed by an amyloid hairpin peptide derived from the beta-sheet of murine PrP: an X-ray and molecular dynamics simulation study.
    Croixmarie V; Briki F; David G; Coïc YM; Ovtracht L; Doucet J; Jamin N; Sanson A
    J Struct Biol; 2005 Jun; 150(3):284-99. PubMed ID: 15890277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A twisted four-sheeted model for an amyloid fibril.
    Wang J; Gülich S; Bradford C; Ramirez-Alvarado M; Regan L
    Structure; 2005 Sep; 13(9):1279-88. PubMed ID: 16154085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
    Andersen CB; Hicks MR; Vetri V; Vandahl B; Rahbek-Nielsen H; Thøgersen H; Thøgersen IB; Enghild JJ; Serpell LC; Rischel C; Otzen DE
    J Mol Biol; 2010 Apr; 397(4):932-46. PubMed ID: 20156459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common core structure of amyloid fibrils by synchrotron X-ray diffraction.
    Sunde M; Serpell LC; Bartlam M; Fraser PE; Pepys MB; Blake CC
    J Mol Biol; 1997 Oct; 273(3):729-39. PubMed ID: 9356260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microbeam X-ray diffraction study of insulin spherulites.
    Yagi N; Ohta N; Iida T; Inoue K
    J Mol Biol; 2006 Sep; 362(2):327-33. PubMed ID: 16919294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice.
    Kirschner DA; Elliott-Bryant R; Szumowski KE; Gonnerman WA; Kindy MS; Sipe JD; Cathcart ES
    J Struct Biol; 1998 Dec; 124(1):88-98. PubMed ID: 9931277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission electron microscopy of amyloid fibrils.
    Gras SL; Waddington LJ; Goldie KN
    Methods Mol Biol; 2011; 752():197-214. PubMed ID: 21713639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray fibre diffraction studies of amyloid fibrils.
    Morris KL; Serpell LC
    Methods Mol Biol; 2012; 849():121-35. PubMed ID: 22528087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for structural characterization of prefibrillar intermediates and amyloid fibrils.
    Langkilde AE; Vestergaard B
    FEBS Lett; 2009 Aug; 583(16):2600-9. PubMed ID: 19481541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers.
    Kishimoto A; Hasegawa K; Suzuki H; Taguchi H; Namba K; Yoshida M
    Biochem Biophys Res Commun; 2004 Mar; 315(3):739-45. PubMed ID: 14975763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of PEG crystallization on the self-assembly of PEG/peptide copolymers containing amyloid peptide fragments.
    Hamley IW; Krysmann MJ
    Langmuir; 2008 Aug; 24(15):8210-4. PubMed ID: 18598063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of Alzheimer's beta(1-40) amyloid: protofilament assembly of tubular fibrils.
    Malinchik SB; Inouye H; Szumowski KE; Kirschner DA
    Biophys J; 1998 Jan; 74(1):537-45. PubMed ID: 9449354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils.
    Measey TJ; Schweitzer-Stenner R
    J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices.
    Inouye H; Kirschner DA
    J Mol Biol; 1997 May; 268(2):375-89. PubMed ID: 9159477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling nanomaterials: monitoring the formation of amyloid fibrils, with a focus on small-angle X-ray scattering.
    Sawyer EB; Gras SL
    Methods Mol Biol; 2013; 996():77-101. PubMed ID: 23504419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared linear dichroism spectroscopy on amyloid fibrils aligned by molecular combing.
    Rodríguez-Pérez JC; Hamley IW; Squires AM
    Biomacromolecules; 2011 May; 12(5):1810-21. PubMed ID: 21446754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.