These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21713639)

  • 1. Transmission electron microscopy of amyloid fibrils.
    Gras SL; Waddington LJ; Goldie KN
    Methods Mol Biol; 2011; 752():197-214. PubMed ID: 21713639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dried and hydrated X-ray scattering analysis of amyloid fibrils.
    Gras SL; Squires AM
    Methods Mol Biol; 2011; 752():147-63. PubMed ID: 21713636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging amyloid fibrils within cells using a Se-labelling strategy.
    Porter AE; Knowles TP; Muller K; Meehan S; McGuire E; Skepper J; Welland ME; Dobson CM
    J Mol Biol; 2009 Oct; 392(4):868-71. PubMed ID: 19635483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techniques to study amyloid fibril formation in vitro.
    Nilsson MR
    Methods; 2004 Sep; 34(1):151-60. PubMed ID: 15283924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
    Andersen CB; Hicks MR; Vetri V; Vandahl B; Rahbek-Nielsen H; Thøgersen H; Thøgersen IB; Enghild JJ; Serpell LC; Rischel C; Otzen DE
    J Mol Biol; 2010 Apr; 397(4):932-46. PubMed ID: 20156459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid.
    Serpell LC; Smith JM
    J Mol Biol; 2000 May; 299(1):225-31. PubMed ID: 10860734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Close-to-native ultrastructural preservation by high pressure freezing.
    Vanhecke D; Graber W; Studer D
    Methods Cell Biol; 2008; 88():151-64. PubMed ID: 18617033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy.
    Paulite M; Fakhraai Z; Li IT; Gunari N; Tanur AE; Walker GC
    J Am Chem Soc; 2011 May; 133(19):7376-83. PubMed ID: 21524071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyceraldehyde-3-phosphate dehydrogenase tetramer dissociation and amyloid fibril formation induced by negatively charged membranes.
    Cortez LM; Avila CL; Bugeau CM; Farías RN; Morero RD; Chehín RN
    FEBS Lett; 2010 Feb; 584(3):625-30. PubMed ID: 20006611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-electron microscopy of biological samples.
    Costello MJ
    Ultrastruct Pathol; 2006; 30(5):361-71. PubMed ID: 17090515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and morphology of the Alzheimer's amyloid fibril.
    Stromer T; Serpell LC
    Microsc Res Tech; 2005 Jul; 67(3-4):210-7. PubMed ID: 16103997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coaggregation of amyloid fibrils for the preparation of stable and immobilized enzymes.
    Kim S; Bae SY; Lee BY; Kim TD
    Anal Biochem; 2012 Feb; 421(2):776-8. PubMed ID: 22037468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostics for amyloid fibril formation: where to begin?
    Hatters DM; Griffin MD
    Methods Mol Biol; 2011; 752():121-36. PubMed ID: 21713634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence.
    Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of protein sequence and amino acid composition in amyloid formation: scrambling and backward reading of IAPP amyloid fibrils.
    Sabaté R; Espargaró A; de Groot NS; Valle-Delgado JJ; Fernàndez-Busquets X; Ventura S
    J Mol Biol; 2010 Nov; 404(2):337-52. PubMed ID: 20887731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic identification of crossovers in cryo-EM images of murine amyloid protein A fibrils with machine learning.
    Weber M; Bäuerle A; Schmidt M; Neumann M; Fändrich M; Ropinski T; Schmidt V
    J Microsc; 2020 Jan; 277(1):12-22. PubMed ID: 31859366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-electron microscopy of vitrified specimens: an approach to the study of bulk specimens.
    Erk I; Delacroix H; Nicolas G; Ranck JL; Lepault J
    J Electron Microsc Tech; 1991 Aug; 18(4):406-10. PubMed ID: 1919793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: history of the amyloid fibril.
    Sipe JD; Cohen AS
    J Struct Biol; 2000 Jun; 130(2-3):88-98. PubMed ID: 10940217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly and hydrogelation of an amyloid peptide fragment.
    Krysmann MJ; Castelletto V; Kelarakis A; Hamley IW; Hule RA; Pochan DJ
    Biochemistry; 2008 Apr; 47(16):4597-605. PubMed ID: 18370402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.