These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21713654)

  • 1. The mechanisms of exocytosis in mast cells.
    Blank U
    Adv Exp Med Biol; 2011; 716():107-22. PubMed ID: 21713654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SNARE Machinery in Mast Cell Secretion.
    Lorentz A; Baumann A; Vitte J; Blank U
    Front Immunol; 2012; 3():143. PubMed ID: 22679448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blocking dephosphorylation at Serine 120 residue in t-SNARE SNAP-23 leads to massive inhibition in exocytosis from mast cells.
    Naskar P; Naqvi N; Puri N
    J Biosci; 2018 Mar; 43(1):127-138. PubMed ID: 29485121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of synaptotagmin 2 on membrane fusion between liposomes that contain SNAREs involved in exocytosis in mast cells.
    Nagai Y; Tadokoro S; Sakiyama H; Hirashima N
    Biochim Biophys Acta; 2011 Oct; 1808(10):2435-9. PubMed ID: 21787744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allergen-sensitization increases mast-cell expression of the exocytotic proteins SNAP-23 and syntaxin 4, which are involved in histamine secretion.
    Salinas E; Quintanar-Stephano A; Córdova LE; Ouintanar JL
    J Investig Allergol Clin Immunol; 2008; 18(5):366-71. PubMed ID: 18973100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Munc18-2, but not Munc18-1 or Munc18-3, controls compound and single-vesicle-regulated exocytosis in mast cells.
    Gutierrez BA; Chavez MA; Rodarte AI; Ramos MA; Dominguez A; Petrova Y; Davalos AJ; Costa RM; Elizondo R; Tuvim MJ; Dickey BF; Burns AR; Heidelberger R; Adachi R
    J Biol Chem; 2018 May; 293(19):7148-7159. PubMed ID: 29599294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SNAREs and associated regulators in the control of exocytosis in the RBL-2H3 mast cell line.
    Blank U; Cyprien B; Martin-Verdeaux S; Paumet F; Pombo I; Rivera J; Roa M; Varin-Blank N
    Mol Immunol; 2002 Sep; 38(16-18):1341-5. PubMed ID: 12217405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional regulation of VAMP3 in exocytic and endocytic pathways of RBL-2H3 cells.
    Mishima S; Sakamoto M; Kioka H; Nagata Y; Suzuki R
    Front Immunol; 2022; 13():885868. PubMed ID: 35990647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of the t-SNARE SNAP-23 and secretory carrier membrane proteins (SCAMPs) in exocytosis in mast cells.
    Castle JD; Guo Z; Liu L
    Mol Immunol; 2002 Sep; 38(16-18):1337-40. PubMed ID: 12217404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-secretion coupling by high-affinity IgE receptor: new developments.
    Benhamou M; Blank U
    FEBS Lett; 2010 Dec; 584(24):4941-8. PubMed ID: 20851120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assays for regulated exocytosis of mast cell granules.
    Blank U; Rivera J
    Curr Protoc Cell Biol; 2006 Oct; Chapter 15():Unit 15.11. PubMed ID: 18228478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane.
    Nishida K; Yamasaki S; Ito Y; Kabu K; Hattori K; Tezuka T; Nishizumi H; Kitamura D; Goitsuka R; Geha RS; Yamamoto T; Yagi T; Hirano T
    J Cell Biol; 2005 Jul; 170(1):115-26. PubMed ID: 15998803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Munc13 proteins control regulated exocytosis in mast cells.
    Rodarte EM; Ramos MA; Davalos AJ; Moreira DC; Moreno DS; Cardenas EI; Rodarte AI; Petrova Y; Molina S; Rendon LE; Sanchez E; Breaux K; Tortoriello A; Manllo J; Gonzalez EA; Tuvim MJ; Dickey BF; Burns AR; Heidelberger R; Adachi R
    J Biol Chem; 2018 Jan; 293(1):345-358. PubMed ID: 29141910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNAP-23 and syntaxin-3 are required for chemokine release by mature human mast cells.
    Frank SP; Thon KP; Bischoff SC; Lorentz A
    Mol Immunol; 2011 Oct; 49(1-2):353-8. PubMed ID: 21981832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis.
    Puri N; Roche PA
    Traffic; 2006 Nov; 7(11):1482-94. PubMed ID: 16984405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of SNAP-23 regulates its dynamic membrane association during mast cell exocytosis.
    Naskar P; Puri N
    Biol Open; 2017 Sep; 6(9):1257-1269. PubMed ID: 28784843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Latrotoxin-induced exocytosis in mast cells transfected with latrophilin.
    Hiramatsu H; Tadokoro S; Nakanishi M; Hirashima N
    Toxicon; 2010 Dec; 56(8):1372-80. PubMed ID: 20708026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cysteine-rich domain of synaptosomal-associated protein of 23 kDa (SNAP-23) regulates its membrane association and regulated exocytosis from mast cells.
    Agarwal V; Naskar P; Agasti S; Khurana GK; Vishwakarma P; Lynn AM; Roche PA; Puri N
    Biochim Biophys Acta Mol Cell Res; 2019 Oct; 1866(10):1618-1633. PubMed ID: 31260699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.
    Safaralizadeh R; Soheili ZS; Deezagi A; Pourpak Z; Samiei S; Moin M
    Iran J Allergy Asthma Immunol; 2009 Dec; 8(4):177-83. PubMed ID: 20404387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.