BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21713766)

  • 1. Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations.
    Kresse SH; Meza-Zepeda LA; Machado I; Llombart-Bosch A; Myklebost O
    Cancer; 2012 Jan; 118(2):558-70. PubMed ID: 21713766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes.
    Cutz JC; Guan J; Bayani J; Yoshimoto M; Xue H; Sutcliffe M; English J; Flint J; LeRiche J; Yee J; Squire JA; Gout PW; Lam S; Wang YZ
    Clin Cancer Res; 2006 Jul; 12(13):4043-54. PubMed ID: 16818704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment and characterization of human urothelial cancer xenografts in severe combined immunodeficient mice.
    Abe T; Tada M; Shinohara N; Okada F; Itoh T; Hamada J; Harabayashi T; Chen Q; Moriuchi T; Nonomura K
    Int J Urol; 2006 Jan; 13(1):47-57. PubMed ID: 16448432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal aberrations in prostate cancer xenografts detected by comparative genomic hybridization.
    Laitinen S; Karhu R; Sawyers CL; Vessella RL; Visakorpi T
    Genes Chromosomes Cancer; 2002 Sep; 35(1):66-73. PubMed ID: 12203791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a new human epithelioid sarcoma cell line, FU-EPS-1: molecular cytogenetic characterization by use of spectral karyotyping and comparative genomic hybridization.
    Nishio J; Iwasaki H; Nabeshima K; Ishiguro M; Naumann S; Isayama T; Naito M; Kaneko Y; Kikuchi M; Bridge JA
    Int J Oncol; 2005 Aug; 27(2):361-9. PubMed ID: 16010416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colorectal cancer patient-derived xenografted tumors maintain characteristic features of the original tumors.
    Cho YB; Hong HK; Choi YL; Oh E; Joo KM; Jin J; Nam DH; Ko YH; Lee WY
    J Surg Res; 2014 Apr; 187(2):502-9. PubMed ID: 24332554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary soft tissue sarcoma and its local recurrence: genetic changes studied by comparative genomic hybridization.
    Popov P; Virolainen M; Tukiainen E; Asko-Scljavaara S; Huuhtanen R; Knuutila S; Tarkkanen M
    Mod Pathol; 2001 Oct; 14(10):978-84. PubMed ID: 11598167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of human tumor xenografts in immunodeficient mice.
    Morton CL; Houghton PJ
    Nat Protoc; 2007; 2(2):247-50. PubMed ID: 17406581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative comparison between the transplantability of human and murine tumors into the subcutaneous tissue of NCr/Sed-nu/nu nude and severe combined immunodeficient mice.
    Taghian A; Budach W; Zietman A; Freeman J; Gioioso D; Ruka W; Suit HD
    Cancer Res; 1993 Oct; 53(20):5012-7. PubMed ID: 8402692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis.
    Angevin E; Glukhova L; Pavon C; Chassevent A; Terrier-Lacombe MJ; Goguel AF; Bougaran J; Ardouin P; Court BH; Perrin JL; Vallancien G; Triebel F; Escudier B
    Lab Invest; 1999 Jul; 79(7):879-88. PubMed ID: 10418828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteosarcoma and interferon. Studies of human xenografts in the nude mouse.
    Brosjö O
    Acta Orthop Scand Suppl; 1989; 229():1-36. PubMed ID: 2494840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment and characterization of in vivo human tumor models in the NOD/SCID/gamma(c)(null) mouse.
    Fujii E; Suzuki M; Matsubara K; Watanabe M; Chen YJ; Adachi K; Ohnishi Y; Tanigawa M; Tsuchiya M; Tamaoki N
    Pathol Int; 2008 Sep; 58(9):559-67. PubMed ID: 18801070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of human ovarian carcinomas in a SCID mouse model.
    Xu Y; Silver DF; Yang NP; Oflazoglu E; Hempling RE; Piver MS; Repasky EA
    Gynecol Oncol; 1999 Feb; 72(2):161-70. PubMed ID: 10021295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization.
    Kresse SH; Ohnstad HO; Paulsen EB; Bjerkehagen B; Szuhai K; Serra M; Schaefer KL; Myklebost O; Meza-Zepeda LA
    Genes Chromosomes Cancer; 2009 Aug; 48(8):679-93. PubMed ID: 19441093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies.
    Jäger W; Xue H; Hayashi T; Janssen C; Awrey S; Wyatt AW; Anderson S; Moskalev I; Haegert A; Alshalalfa M; Erho N; Davicioni E; Fazli L; Li E; Collins C; Wang Y; Black PC
    Oncotarget; 2015 Aug; 6(25):21522-32. PubMed ID: 26041878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis.
    Zhang L; Yu D; Hicklin DJ; Hannay JA; Ellis LM; Pollock RE
    Cancer Res; 2002 Apr; 62(7):2034-42. PubMed ID: 11929822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence of the importance of stromal urokinase plasminogen activator (uPA) in the growth of an experimental human breast cancer using a combined uPA gene-disrupted and immunodeficient xenograft model.
    Frandsen TL; Holst-Hansen C; Nielsen BS; Christensen IJ; Nyengaard JR; Carmeliet P; Brünner N
    Cancer Res; 2001 Jan; 61(2):532-7. PubMed ID: 11212246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-linked dominant growth suppression of transplanted tumors in C57BL/6J-scid mice.
    Wood M; Udagawa T; Hida Y; D'Amato RJ
    Cancer Res; 2005 Jul; 65(13):5690-5. PubMed ID: 15994943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of TP53 in sarcomas with 17p12 to approximately p11 gain. A fine-resolution oligonucleotide array comparative genomic hybridization study.
    Kaur S; Larramendy ML; Vauhkonen H; Böhling T; Knuutila S
    Cytogenet Genome Res; 2007; 116(3):153-7. PubMed ID: 17317953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Array comparative genomic hybridization reveals distinct DNA copy number differences between gastrointestinal stromal tumors and leiomyosarcomas.
    Meza-Zepeda LA; Kresse SH; Barragan-Polania AH; Bjerkehagen B; Ohnstad HO; Namløs HM; Wang J; Kristiansen BE; Myklebost O
    Cancer Res; 2006 Sep; 66(18):8984-93. PubMed ID: 16982739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.