BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 21713970)

  • 1. Critical load analysis in hazard assessment of metals using a Unit World Model.
    Gandhi N; Bhavsar SP; Diamond ML
    Environ Toxicol Chem; 2011 Sep; 30(9):2157-66. PubMed ID: 21713970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes.
    Farley KJ; Carbonaro RF; Fanelli CJ; Costanzo R; Rader KJ; Di Toro DM
    Environ Toxicol Chem; 2011 Jun; 30(6):1278-87. PubMed ID: 21381089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK.
    Donnachie RL; Johnson AC; Moeckel C; Pereira MG; Sumpter JP
    Environ Pollut; 2014 Nov; 194():17-23. PubMed ID: 25084241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Fate of Metal Concentrates in Surface Water.
    Carbonaro RF; Farley KJ; Delbeke K; Baken S; Arbildua JJ; Rodriguez PH; Rader KJ
    Environ Toxicol Chem; 2019 Jun; 38(6):1256-1272. PubMed ID: 30903662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of geographic variability on Comparative Toxicity Potentials of Cu, Ni and Zn in freshwaters of Canadian ecoregions.
    Gandhi N; Huijbregts MA; Meent Dv; Peijnenburg WJ; Guinée J; Diamond ML
    Chemosphere; 2011 Jan; 82(2):268-77. PubMed ID: 20934738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions.
    De Jonge M; Lofts S; Bervoets L; Blust R
    Sci Total Environ; 2014 Oct; 496():11-21. PubMed ID: 25051425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioavailability Assessment of Metals in Freshwater Environments: A Historical Review.
    Adams W; Blust R; Dwyer R; Mount D; Nordheim E; Rodriguez PH; Spry D
    Environ Toxicol Chem; 2020 Jan; 39(1):48-59. PubMed ID: 31880839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.
    Liu Y; Wu F; Mu Y; Feng C; Fang Y; Chen L; Giesy JP
    Rev Environ Contam Toxicol; 2014; 230():35-57. PubMed ID: 24609517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc.
    Gandhi N; Diamond ML; van de Meent D; Huijbregts MA; Peijnenburg WJ; Guinée J
    Environ Sci Technol; 2010 Jul; 44(13):5195-201. PubMed ID: 20536257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a new toxic-unit model for the bioassessment of metals in streams.
    Schmidt TS; Clements WH; Mitchell KA; Church SE; Wanty RB; Fey DL; Verplanck PL; San Juan CA
    Environ Toxicol Chem; 2010 Nov; 29(11):2432-42. PubMed ID: 20853459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil.
    Bhavsar SP; Gandhi N; Diamond ML
    Chemosphere; 2008 Jan; 70(5):914-24. PubMed ID: 17707882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.
    Lathouri M; Korre A
    Sci Total Environ; 2015 Dec; 538():385-401. PubMed ID: 26318223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The two faces of DOC.
    Wood CM; Al-Reasi HA; Smith DS
    Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):3-8. PubMed ID: 22099339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the hazard posed by metal forms in water and sediments.
    Wojtkowska M; Bogacki J; Witeska A
    Sci Total Environ; 2016 May; 551-552():387-92. PubMed ID: 26891009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of estimates from different geochemical models on metal fate predicted by coupled speciation-fate models.
    Bhavsar SP; Gandhi N; Diamond ML; Lock AS; Spiers G; de la Torre MC
    Environ Toxicol Chem; 2008 May; 27(5):1020-30. PubMed ID: 18419189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model.
    Kozlova T; Wood CM; McGeer JC
    Aquat Toxicol; 2009 Feb; 91(3):221-8. PubMed ID: 19111357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability.
    Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R
    Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of biotic ligand model-based freshwater aquatic life criteria for lead following us environmental protection agency guidelines.
    DeForest DK; Santore RC; Ryan AC; Church BG; Chowdhury MJ; Brix KV
    Environ Toxicol Chem; 2017 Nov; 36(11):2965-2973. PubMed ID: 28636272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A framework for ecological risk assessment of metal mixtures in aquatic systems.
    Nys C; Van Regenmortel T; Janssen CR; Oorts K; Smolders E; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Mar; 37(3):623-642. PubMed ID: 29135043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.