These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21714036)

  • 1. Cerebral hemodynamics in newborn infants exposed to speech sounds: a whole-head optical topography study.
    Sato H; Hirabayashi Y; Tsubokura H; Kanai M; Ashida T; Konishi I; Uchida-Ota M; Konishi Y; Maki A
    Hum Brain Mapp; 2012 Sep; 33(9):2092-103. PubMed ID: 21714036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal speech shapes the cerebral frontotemporal network in neonates: A hemodynamic functional connectivity study.
    Uchida-Ota M; Arimitsu T; Tsuzuki D; Dan I; Ikeda K; Takahashi T; Minagawa Y
    Dev Cogn Neurosci; 2019 Oct; 39():100701. PubMed ID: 31513977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain regions and functional interactions supporting early word recognition in the face of input variability.
    Benavides-Varela S; Siugzdaite R; Gómez DM; Macagno F; Cattarossi L; Mehler J
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7588-7593. PubMed ID: 28674020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy.
    Hong KS; Santosa H
    Hear Res; 2016 Mar; 333():157-166. PubMed ID: 26828741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional neuroimaging of speech perception in infants.
    Dehaene-Lambertz G; Dehaene S; Hertz-Pannier L
    Science; 2002 Dec; 298(5600):2013-5. PubMed ID: 12471265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical brain imaging reveals general auditory and language-specific processing in early infant development.
    Minagawa-Kawai Y; van der Lely H; Ramus F; Sato Y; Mazuka R; Dupoux E
    Cereb Cortex; 2011 Feb; 21(2):254-61. PubMed ID: 20497946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates.
    Zhang D; Chen Y; Hou X; Wu YJ
    Hum Brain Mapp; 2019 Jun; 40(8):2434-2448. PubMed ID: 30697881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus.
    Möttönen R; Calvert GA; Jääskeläinen IP; Matthews PM; Thesen T; Tuomainen J; Sams M
    Neuroimage; 2006 Apr; 30(2):563-9. PubMed ID: 16275021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sounds and silence: an optical topography study of language recognition at birth.
    Peña M; Maki A; Kovacić D; Dehaene-Lambertz G; Koizumi H; Bouquet F; Mehler J
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11702-5. PubMed ID: 14500906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes in the brain response to speech during the first year of life: A near-infrared spectroscopy study of dutch-learning infants.
    Zhang F; Gervain J; Roeyers H
    Infant Behav Dev; 2022 May; 67():101724. PubMed ID: 35640398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct hemispheric specializations for native and non-native languages in one-day-old newborns identified by fNIRS.
    Vannasing P; Florea O; González-Frankenberger B; Tremblay J; Paquette N; Safi D; Wallois F; Lepore F; Béland R; Lassonde M; Gallagher A
    Neuropsychologia; 2016 Apr; 84():63-9. PubMed ID: 26851309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of neural speech discrimination in preterm infants at term-equivalent age.
    Bartha-Doering L; Alexopoulos J; Giordano V; Stelzer L; Kainz T; Benavides-Varela S; Wartenburger I; Klebermass-Schrehof K; Olischar M; Seidl R; Berger A
    Dev Cogn Neurosci; 2019 Oct; 39():100679. PubMed ID: 31437736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptive and expressive language activations for sentences: a PET study.
    Müller RA; Rothermel RD; Behen ME; Muzik O; Mangner TJ; Chugani HT
    Neuroreport; 1997 Dec; 8(17):3767-70. PubMed ID: 9427367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntactic Complexity and Frequency in the Neurocognitive Language System.
    Yang YH; Marslen-Wilson WD; Bozic M
    J Cogn Neurosci; 2017 Sep; 29(9):1605-1620. PubMed ID: 28430044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Language-activated cerebral blood oxygenation and hemodynamic changes of the left prefrontal cortex in poststroke aphasic patients: a near-infrared spectroscopy study.
    Sakatani K; Xie Y; Lichty W; Li S; Zuo H
    Stroke; 1998 Jul; 29(7):1299-304. PubMed ID: 9660376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The right hemisphere of sleeping infant perceives sentential prosody.
    Homae F; Watanabe H; Nakano T; Asakawa K; Taga G
    Neurosci Res; 2006 Apr; 54(4):276-80. PubMed ID: 16427714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prefrontal cortical involvement in young infants' analysis of novelty.
    Nakano T; Watanabe H; Homae F; Taga G
    Cereb Cortex; 2009 Feb; 19(2):455-63. PubMed ID: 18544555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.
    Wijayasiri P; Hartley DEH; Wiggins IM
    Hear Res; 2017 Aug; 351():55-67. PubMed ID: 28571617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cerebral hemodynamic response to phonetic changes of speech in preterm and term infants: The impact of postmenstrual age.
    Arimitsu T; Minagawa Y; Yagihashi T; O Uchida M; Matsuzaki A; Ikeda K; Takahashi T
    Neuroimage Clin; 2018; 19():599-606. PubMed ID: 29984167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of language cortex with automatic speech tasks.
    Bookheimer SY; Zeffiro TA; Blaxton TA; Gaillard PW; Theodore WH
    Neurology; 2000 Oct; 55(8):1151-7. PubMed ID: 11071493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.