These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 21714090)
21. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. Xu L; Zhang E; Yin D; Zeng S; Yang K J Mater Sci Mater Med; 2008 Mar; 19(3):1017-25. PubMed ID: 17665099 [TBL] [Abstract][Full Text] [Related]
22. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Kannan MB; Raman RK Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746 [TBL] [Abstract][Full Text] [Related]
23. Potential bioactivity of coatings formed on AZ91D magnesium alloy by plasma electrolytic anodizing. Vu TN; Veys-Renaux D; Rocca E J Biomed Mater Res B Appl Biomater; 2012 Oct; 100(7):1846-53. PubMed ID: 22807000 [TBL] [Abstract][Full Text] [Related]
24. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid. Jafari S; Singh Raman RK Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():278-287. PubMed ID: 28575985 [TBL] [Abstract][Full Text] [Related]
25. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone. Liu J; Lin Y; Bian D; Wang M; Lin Z; Chu X; Li W; Liu Y; Shen Z; Liu Y; Tong Y; Xu Z; Zhang Y; Zheng Y Acta Biomater; 2019 Oct; 98():50-66. PubMed ID: 30853611 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications. Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207 [TBL] [Abstract][Full Text] [Related]
27. Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases. Cha PR; Han HS; Yang GF; Kim YC; Hong KH; Lee SC; Jung JY; Ahn JP; Kim YY; Cho SY; Byun JY; Lee KS; Yang SJ; Seok HK Sci Rep; 2013; 3():2367. PubMed ID: 23917705 [TBL] [Abstract][Full Text] [Related]
28. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells. Liu Y; Wu Y; Bian D; Gao S; Leeflang S; Guo H; Zheng Y; Zhou J Acta Biomater; 2017 Oct; 62():418-433. PubMed ID: 28823717 [TBL] [Abstract][Full Text] [Related]
29. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Bornapour M; Muja N; Shum-Tim D; Cerruti M; Pekguleryuz M Acta Biomater; 2013 Feb; 9(2):5319-30. PubMed ID: 22871640 [TBL] [Abstract][Full Text] [Related]
30. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. Gu XN; Zhou WR; Zheng YF; Cheng Y; Wei SC; Zhong SP; Xi TF; Chen LJ Acta Biomater; 2010 Dec; 6(12):4605-13. PubMed ID: 20656074 [TBL] [Abstract][Full Text] [Related]
31. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Törne K; Örnberg A; Weissenrieder J Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765 [TBL] [Abstract][Full Text] [Related]
32. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating. Rojaee R; Fathi M; Raeissi K Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3817-25. PubMed ID: 23910282 [TBL] [Abstract][Full Text] [Related]
33. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys. Lu Y; Bradshaw AR; Chiu YL; Jones IP Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():480-6. PubMed ID: 25579949 [TBL] [Abstract][Full Text] [Related]
34. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements. Chen Y; Dou J; Yu H; Chen C J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910 [TBL] [Abstract][Full Text] [Related]
35. Control of magnesium corrosion and biocompatibility with biomimetic coatings. Keim S; Brunner JG; Fabry B; Virtanen S J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):84-90. PubMed ID: 21053267 [TBL] [Abstract][Full Text] [Related]
36. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. Makkar P; Sarkar SK; Padalhin AR; Moon BG; Lee YS; Lee BT J Appl Biomater Funct Mater; 2018 Jul; 16(3):126-136. PubMed ID: 29607729 [TBL] [Abstract][Full Text] [Related]
37. Corrosion behavior and cytotoxicity of Mg-35Zn-3Ca alloy for surface modified biodegradable implant material. Park RS; Kim YK; Lee SJ; Jang YS; Park IS; Yun YH; Bae TS; Lee MH J Biomed Mater Res B Appl Biomater; 2012 May; 100(4):911-23. PubMed ID: 22287336 [TBL] [Abstract][Full Text] [Related]
38. In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Witecka A; Bogucka A; Yamamoto A; Máthis K; Krajňák T; Jaroszewicz J; Święszkowski W Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():59-69. PubMed ID: 27157728 [TBL] [Abstract][Full Text] [Related]
39. Enhanced corrosion resistance and cytocompatibility of biomimetic hyaluronic acid functionalised silane coating on AZ31 Mg alloy for orthopaedic applications. Agarwal S; Labour MN; Hoey D; Duffy B; Curtin J; Jaiswal S J Mater Sci Mater Med; 2018 Aug; 29(9):144. PubMed ID: 30155669 [TBL] [Abstract][Full Text] [Related]
40. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Xin Y; Huo K; Tao H; Tang G; Chu PK Acta Biomater; 2008 Nov; 4(6):2008-15. PubMed ID: 18571486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]