These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Algorithms for optimal protein structure alignment. Poleksic A Bioinformatics; 2009 Nov; 25(21):2751-6. PubMed ID: 19734152 [TBL] [Abstract][Full Text] [Related]
4. Pairwise alignment for very long nucleic acid sequences. Sun J; Chen K; Hao Z Biochem Biophys Res Commun; 2018 Jul; 502(3):313-317. PubMed ID: 29800571 [TBL] [Abstract][Full Text] [Related]
5. CAALIGN: a program for pairwise and multiple protein-structure alignment. Oldfield TJ Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):514-25. PubMed ID: 17372357 [TBL] [Abstract][Full Text] [Related]
6. SE: an algorithm for deriving sequence alignment from a pair of superimposed structures. Tai CH; Vincent JJ; Kim C; Lee B BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S4. PubMed ID: 19208141 [TBL] [Abstract][Full Text] [Related]
7. Using Variable-Length Aligned Fragment Pairs and an Improved Transition Function for Flexible Protein Structure Alignment. Cao H; Lu Y J Comput Biol; 2017 Jan; 24(1):2-12. PubMed ID: 27710035 [TBL] [Abstract][Full Text] [Related]
9. Discovery of structural motifs using protein structural alphabets and 1D motif-finding methods. Ku SY; Hu YJ Adv Exp Med Biol; 2010; 680():117-23. PubMed ID: 20865493 [TBL] [Abstract][Full Text] [Related]
10. Clustering protein sequences--structure prediction by transitive homology. Bolten E; Schliep A; Schneckener S; Schomburg D; Schrader R Bioinformatics; 2001 Oct; 17(10):935-41. PubMed ID: 11673238 [TBL] [Abstract][Full Text] [Related]
11. Incorporating homologues into sequence embeddings for protein analysis. Eskin E; Snir S J Bioinform Comput Biol; 2007 Jun; 5(3):717-38. PubMed ID: 17688313 [TBL] [Abstract][Full Text] [Related]
12. A polynomial-time algorithm for a class of protein threading problems. Xu Y; Uberbacher EC Comput Appl Biosci; 1996 Dec; 12(6):511-7. PubMed ID: 9021270 [TBL] [Abstract][Full Text] [Related]
13. Faster algorithms for optimal multiple sequence alignment based on pairwise comparisons. Bilu Y; Agarwal PK; Kolodny R IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):408-22. PubMed ID: 17085849 [TBL] [Abstract][Full Text] [Related]
14. Introduction of a distance cut-off into structural alignment by the double dynamic programming algorithm. Toh H Comput Appl Biosci; 1997 Aug; 13(4):387-96. PubMed ID: 9283753 [TBL] [Abstract][Full Text] [Related]
16. SALSA: improved protein database searching by a new algorithm for assembly of sequence fragments into gapped alignments. Rognes T; Seeberg E Bioinformatics; 1998; 14(10):839-45. PubMed ID: 9927712 [TBL] [Abstract][Full Text] [Related]
17. Using structure to explore the sequence alignment space of remote homologs. Kuziemko A; Honig B; Petrey D PLoS Comput Biol; 2011 Oct; 7(10):e1002175. PubMed ID: 21998567 [TBL] [Abstract][Full Text] [Related]
18. Pairwise sequence alignment for very long sequences on GPUs. Li J; Ranka S; Sahni S Int J Bioinform Res Appl; 2014; 10(4-5):345-68. PubMed ID: 24989857 [TBL] [Abstract][Full Text] [Related]
19. DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Ferrè F; Ponty Y; Lorenz WA; Clote P Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W659-68. PubMed ID: 17567620 [TBL] [Abstract][Full Text] [Related]
20. From analysis of protein structural alignments toward a novel approach to align protein sequences. Sunyaev SR; Bogopolsky GA; Oleynikova NV; Vlasov PK; Finkelstein AV; Roytberg MA Proteins; 2004 Feb; 54(3):569-82. PubMed ID: 14748004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]