BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 21714131)

  • 1. In search of the protein native state with a probabilistic sampling approach.
    Olson B; Molloy K; Shehu A
    J Bioinform Comput Biol; 2011 Jun; 9(3):383-98. PubMed ID: 21714131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
    Saleh S; Olson B; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction.
    Molloy K; Saleh S; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1162-75. PubMed ID: 24384705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.
    Hao XH; Zhang GJ; Zhou XG; Yu XF
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):887-900. PubMed ID: 26552093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guiding probabilistic search of the protein conformational space with structural profiles.
    Olson B; Molloy K; Hendi SF; Shehu A
    J Bioinform Comput Biol; 2012 Jun; 10(3):1242005. PubMed ID: 22809381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a detailed understanding of search trajectories in fragment assembly approaches to protein structure prediction.
    Kandathil SM; Handl J; Lovell SC
    Proteins; 2016 Apr; 84(4):411-26. PubMed ID: 26799916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Customised fragments libraries for protein structure prediction based on structural class annotations.
    Abbass J; Nebel JC
    BMC Bioinformatics; 2015 Apr; 16(1):136. PubMed ID: 25925397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.
    Zaman AB; Shehu A
    BMC Bioinformatics; 2019 Apr; 20(1):211. PubMed ID: 31023237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface.
    Olson BS; Shehu A
    Proteome Sci; 2012 Jun; 10 Suppl 1(Suppl 1):S5. PubMed ID: 22759582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced sampling near the native conformation using statistical potentials for local side-chain and backbone interactions.
    Fang Q; Shortle D
    Proteins; 2005 Jul; 60(1):97-102. PubMed ID: 15852306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics.
    Keasar C; Levitt M
    J Mol Biol; 2003 May; 329(1):159-74. PubMed ID: 12742025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A probabilistic and continuous model of protein conformational space for template-free modeling.
    Zhao F; Peng J; Debartolo J; Freed KF; Sosnick TR; Xu J
    J Comput Biol; 2010 Jun; 17(6):783-98. PubMed ID: 20583926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling.
    Bhattacharya D; Cao R; Cheng J
    Bioinformatics; 2016 Sep; 32(18):2791-9. PubMed ID: 27259540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of fragment-based protein structure prediction: biased fragment replacement for searching low-energy conformation.
    Park SJ
    Genome Inform; 2005; 16(2):104-13. PubMed ID: 16901094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large loop conformation sampling using the activation relaxation technique, ART-nouveau method.
    St-Pierre JF; Mousseau N
    Proteins; 2012 Jul; 80(7):1883-94. PubMed ID: 22488731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sampling approach for protein backbone fragment conformations.
    Yu JY; Zhang W
    Int J Data Min Bioinform; 2013; 7(2):180-95. PubMed ID: 23777175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Protein Conformational Space Sampling Using Distance Profile-Guided Differential Evolution.
    Zhang GJ; Zhou XG; Yu XF; Hao XH; Yu L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1288-1301. PubMed ID: 28113726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing effective energy functions for protein structure prediction through broadening attraction-basin and reverse Monte Carlo sampling.
    Wang C; Wei Y; Zhang H; Kong L; Sun S; Zheng WM; Bu D
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):135. PubMed ID: 30925867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.