These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 21714233)
1. [Application of near infrared spectral fingerprint technique in lamb meat origin traceability]. Sun SM; Guo BL; Wei YM; Fan MT Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):937-41. PubMed ID: 21714233 [TBL] [Abstract][Full Text] [Related]
2. Classification of geographical origins and prediction of δ13C and δ15N values of lamb meat by near infrared reflectance spectroscopy. Sun S; Guo B; Wei Y; Fan M Food Chem; 2012 Nov; 135(2):508-14. PubMed ID: 22868121 [TBL] [Abstract][Full Text] [Related]
3. Discrimination of Trichosanthis Fructus from Different Geographical Origins Using Near Infrared Spectroscopy Coupled with Chemometric Techniques. Xu L; Sun W; Wu C; Ma Y; Chao Z Molecules; 2019 Apr; 24(8):. PubMed ID: 31010152 [TBL] [Abstract][Full Text] [Related]
4. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Zhao H; Guo B; Wei Y; Zhang B Food Chem; 2013 Jun; 138(2-3):1902-7. PubMed ID: 23411323 [TBL] [Abstract][Full Text] [Related]
5. Discrimination of Ganoderma lucidum according to geographical origin with near infrared diffuse reflectance spectroscopy and pattern recognition techniques. Chen Y; Xie MY; Yan Y; Zhu SB; Nie SP; Li C; Wang YX; Gong XF Anal Chim Acta; 2008 Jun; 618(2):121-30. PubMed ID: 18513533 [TBL] [Abstract][Full Text] [Related]
6. Discrimination of Zuo Y; Deng X; Wu Q Molecules; 2018 May; 23(5):. PubMed ID: 29734695 [TBL] [Abstract][Full Text] [Related]
7. Using near infrared spectroscopy to classify soybean oil according to expiration date. da Costa GB; Fernandes DD; Gomes AA; de Almeida VE; Veras G Food Chem; 2016 Apr; 196():539-43. PubMed ID: 26593525 [TBL] [Abstract][Full Text] [Related]
8. Identifying Meat from Grazing or Feedlot Yaks Using Visible and Near-infrared Spectroscopy with Chemometrics. Liu Y; Xiang Y; Sun W; Degen A; Xu H; Huang Y; Zhong R; Hao L J Food Prot; 2024 Jul; 87(7):100295. PubMed ID: 38729244 [TBL] [Abstract][Full Text] [Related]
9. Geographic classification of spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis. Liu L; Cozzolino D; Cynkar WU; Gishen M; Colby CB J Agric Food Chem; 2006 Sep; 54(18):6754-9. PubMed ID: 16939336 [TBL] [Abstract][Full Text] [Related]
10. Visible-near-infrared spectroscopy to predict water-holding capacity in normal and pale broiler breast meat. Samuel D; Park B; Sohn M; Wicker L Poult Sci; 2011 Apr; 90(4):914-21. PubMed ID: 21406380 [TBL] [Abstract][Full Text] [Related]
11. [Discrimination of Varieties of Cabbage with Near Infrared Spectra Based on Principal Component Analysis and Successive Projections Algorithm]. Luo W; Du YZ; Zhang HL Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3536-41. PubMed ID: 30198665 [TBL] [Abstract][Full Text] [Related]
12. Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics. Hao Y; Geng P; Wu W; Wen Q; Rao M Molecules; 2019 Dec; 24(24):. PubMed ID: 31847134 [TBL] [Abstract][Full Text] [Related]
13. Classification of structurally related commercial contrast media by near infrared spectroscopy. Yip WL; Soosainather TC; Dyrstad K; Sande SA J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816 [TBL] [Abstract][Full Text] [Related]
14. Discriminating geographical origins and determining active substances of water caltrop shells through near-infrared spectroscopy and chemometrics. Li R; Liu Y; Xia Z; Wang Q; Liu X; Gong Z Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123198. PubMed ID: 37531683 [TBL] [Abstract][Full Text] [Related]
15. Usefulness of near-infrared reflectance (NIR) spectroscopy and chemometrics to discriminate fishmeal batches made with different fish species. Cozzolino D; Chree A; Scaife JR; Murray I J Agric Food Chem; 2005 Jun; 53(11):4459-63. PubMed ID: 15913311 [TBL] [Abstract][Full Text] [Related]
16. Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Robert C; Fraser-Miller SJ; Jessep WT; Bain WE; Hicks TM; Ward JF; Craigie CR; Loeffen M; Gordon KC Food Chem; 2021 May; 343():128441. PubMed ID: 33127228 [TBL] [Abstract][Full Text] [Related]
17. [Discriminant analysis of near infrared diffuse reflectance spectra to detect adulteration of non-ruminant meat and bone meal]. Li QF; Yang ZL; Han LJ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):572-7. PubMed ID: 18536415 [TBL] [Abstract][Full Text] [Related]
18. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Kamruzzaman M; Sun DW; ElMasry G; Allen P Talanta; 2013 Jan; 103():130-6. PubMed ID: 23200368 [TBL] [Abstract][Full Text] [Related]
19. A novel near infrared spectroscopy analytical strategy for meat and bone meal species discrimination based on the insight of fraction composition complexity. Gao B; Xu X; Han L; Liu X Food Chem; 2021 May; 344():128645. PubMed ID: 33229158 [TBL] [Abstract][Full Text] [Related]
20. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review]. Tao LL; Yang XJ; Deng JM; Zhang X Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]