BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21714268)

  • 1. [Spectral property of one-dimensional rodlike nano cellulose].
    Zhang LP; Tang HW; Qu P; Li S; Qin Z; Sun SQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):1097-100. PubMed ID: 21714268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of nano-cellulose with new shape from different precursor.
    Maiti S; Jayaramudu J; Das K; Reddy SM; Sadiku R; Ray SS; Liu D
    Carbohydr Polym; 2013 Oct; 98(1):562-7. PubMed ID: 23987382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue.
    Mohamad Haafiz MK; Eichhorn SJ; Hassan A; Jawaid M
    Carbohydr Polym; 2013 Apr; 93(2):628-34. PubMed ID: 23499105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.
    Oh SY; Yoo DI; Shin Y; Kim HC; Kim HY; Chung YS; Park WH; Youk JH
    Carbohydr Res; 2005 Oct; 340(15):2376-91. PubMed ID: 16153620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preparation and spectrum properties of cellulose nanoparticles].
    Tang LR; Huang B; Dai DS; Ou W; Lin YP; Chen XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1876-9. PubMed ID: 20827990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on spectroscopic characterization and property of PES/ micro-nano cellulose composite membrane material].
    Tang HW; Zhang LP; Li S; Zhao GJ; Qin Z; Sun SQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):630-4. PubMed ID: 20496675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.
    Tian C; Yi J; Wu Y; Wu Q; Qing Y; Wang L
    Carbohydr Polym; 2016 Jan; 136():485-92. PubMed ID: 26572379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and physicochemical properties of cellulose nanowhiskers from Pennisetum purpureum via different acid hydrolysis reaction time.
    Sucinda EF; Abdul Majid MS; Ridzuan MJM; Sultan MTH; Gibson AG
    Int J Biol Macromol; 2020 Jul; 155():241-248. PubMed ID: 32240733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.
    Li M; Wang LJ; Li D; Cheng YL; Adhikari B
    Carbohydr Polym; 2014 Feb; 102():136-43. PubMed ID: 24507265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano structure zinc (II) Schiff base complexes of a N3-tridentate ligand as new biological active agents: spectral, thermal behaviors and crystal structure of zinc azide complex.
    Montazerozohori M; Mojahedi Jahromi S; Masoudiasl A; McArdle P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():517-28. PubMed ID: 25528511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of thermogravimetric analysis to monitor the effects of natural laccase mediators on flax pulp.
    Vila C; Barneto AG; Fillat A; Vidal T; Ariza J
    Bioresour Technol; 2011 Jun; 102(11):6554-61. PubMed ID: 21498071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation.
    Liao Z; Huang Z; Hu H; Zhang Y; Tan Y
    Bioresour Technol; 2011 Sep; 102(17):7953-8. PubMed ID: 21680177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.
    Habibi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():55-8. PubMed ID: 24820322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes.
    Kljun A; Benians TA; Goubet F; Meulewaeter F; Knox JP; Blackburn RS
    Biomacromolecules; 2011 Nov; 12(11):4121-6. PubMed ID: 21981266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms.
    Ahmed-Haras MR; Kao N; Ward L; Islam MS
    Int J Biol Macromol; 2020 Mar; 146():150-161. PubMed ID: 31837363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre.
    Rasheed M; Jawaid M; Parveez B; Zuriyati A; Khan A
    Int J Biol Macromol; 2020 Oct; 160():183-191. PubMed ID: 32454108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of electrohydrodynamic technique as a complementary process for cellulose extraction from bagasse: Crystalline to amorphous transition.
    Ahmadzadeh S; Nasirpour A; Harchegani MB; Hamdami N; Keramat J
    Carbohydr Polym; 2018 May; 188():188-196. PubMed ID: 29525156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose.
    Kian LK; Jawaid M; Ariffin H; Karim Z
    Int J Biol Macromol; 2018 Jul; 114():54-63. PubMed ID: 29551511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.