BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21714268)

  • 21. Extraction and Characterization of Nanocellulose Structures from Linter Dissolving Pulp Using Ultrafine Grinder.
    Ghasemi S; Behrooz R; Ghasemi I
    J Nanosci Nanotechnol; 2016 Jun; 16(6):5791-7. PubMed ID: 27427633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.
    Mtibe A; Linganiso LZ; Mathew AP; Oksman K; John MJ; Anandjiwala RD
    Carbohydr Polym; 2015 Mar; 118():1-8. PubMed ID: 25542099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization.
    Kaushik A; Singh M
    Carbohydr Res; 2011 Jan; 346(1):76-85. PubMed ID: 21094489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.
    Chen YW; Lee HV; Juan JC; Phang SM
    Carbohydr Polym; 2016 Oct; 151():1210-1219. PubMed ID: 27474672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.
    Habibi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1450-3. PubMed ID: 25459705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen bond formation in regioselectively functionalized 3-mono-O-methyl cellulose.
    Kondo T; Koschella A; Heublein B; Klemm D; Heinze T
    Carbohydr Res; 2008 Oct; 343(15):2600-4. PubMed ID: 18635159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of Cellulose Nanocrystals by Synergistic Action of Ionic Liquid and Recyclable Solid Acid under Mild Conditions.
    Ma L; Xu Y; Chen J; Dong C; Pang Z
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation and characterization of microcrystalline cellulose from roselle fibers.
    Kian LK; Jawaid M; Ariffin H; Alothman OY
    Int J Biol Macromol; 2017 Oct; 103():931-940. PubMed ID: 28549863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and characterization of spherical cellulose nanocrystals with high purity by the composite enzymolysis of pulp fibers.
    Xu JT; Chen XQ
    Bioresour Technol; 2019 Nov; 291():121842. PubMed ID: 31377505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers.
    Ciolacu D; Kovac J; Kokol V
    Carbohydr Res; 2010 Mar; 345(5):621-30. PubMed ID: 20122684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural, Morphological and Thermal Properties of Cellulose Nanofibers from Napier fiber (
    Radakisnin R; Abdul Majid MS; Jamir MRM; Jawaid M; Sultan MTH; Mat Tahir MF
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32957438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method.
    Benini KCCC; Voorwald HJC; Cioffi MOH; Rezende MC; Arantes V
    Carbohydr Polym; 2018 Jul; 192():337-346. PubMed ID: 29691029
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.
    C S JC; George N; Narayanankutty SK
    Carbohydr Polym; 2016 May; 142():158-66. PubMed ID: 26917386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.
    Kisku SK; Dash S; Swain SK
    Carbohydr Polym; 2014 Jan; 99():306-10. PubMed ID: 24274511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of cellulose nanocrystals from spent edible fungus substrate.
    He Q; Yang Y; Liu Z; Shao D; Jiang D; Xing L; Pan Q; Shan H
    J Sci Food Agric; 2022 May; 102(7):2761-2772. PubMed ID: 34719041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of Fourier Series in X-ray Diffraction (XRD) Analysis and Fourier-Transform Infrared Spectroscopy (FTIR) for Estimation of Crystallinity in Cellulose from Different Sources.
    Montoya-Escobar N; Ospina-Acero D; Velásquez-Cock JA; Gómez-Hoyos C; Serpa Guerra A; Gañan Rojo PF; Vélez Acosta LM; Escobar JP; Correa-Hincapié N; Triana-Chávez O; Zuluaga Gallego R; Stefani PM
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Combined Acid-alkali and Heat Treatment on the Physiochemical Structure of Moso Bamboo.
    Gao J; Qu L; Qian J; Wang Z; Li Y; Yi S; He Z
    Sci Rep; 2020 Apr; 10(1):6760. PubMed ID: 32317739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermogravimetry study of xylanase- and laccase/mediator-treated eucalyptus pulp fibres.
    Barneto AG; Valls C; Ariza J; Roncero MB
    Bioresour Technol; 2011 Oct; 102(19):9033-9. PubMed ID: 21840212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.
    Liu Y; Thibodeaux D; Gamble G; Bauer P; VanDerveer D
    Appl Spectrosc; 2012 Aug; 66(8):983-6. PubMed ID: 22800914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization.
    Li J; Wei X; Wang Q; Chen J; Chang G; Kong L; Su J; Liu Y
    Carbohydr Polym; 2012 Nov; 90(4):1609-13. PubMed ID: 22944423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.