BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21714500)

  • 1. Binding of calcium, magnesium, and target peptides to Cdc31, the centrin of yeast Saccharomyces cerevisiae.
    Miron S; Durand D; Chilom C; Pérez J; Craescu CT
    Biochemistry; 2011 Jul; 50(29):6409-22. PubMed ID: 21714500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scherffelia dubia centrin exhibits a specific mechanism for Ca(2+)-controlled target binding.
    Radu L; Durussel I; Assairi L; Blouquit Y; Miron S; Cox JA; Craescu CT
    Biochemistry; 2010 May; 49(20):4383-94. PubMed ID: 20408559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, dynamics and thermodynamics of the human centrin 2/hSfi1 complex.
    Martinez-Sanz J; Kateb F; Assairi L; Blouquit Y; Bodenhausen G; Abergel D; Mouawad L; Craescu CT
    J Mol Biol; 2010 Jan; 395(1):191-204. PubMed ID: 19857500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal domain of human centrin 2 has a closed structure, binds calcium with a very low affinity, and plays a role in the protein self-assembly.
    Yang A; Miron S; Duchambon P; Assairi L; Blouquit Y; Craescu CT
    Biochemistry; 2006 Jan; 45(3):880-9. PubMed ID: 16411764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of human centrin 2 to the centrosomal protein hSfi1.
    Martinez-Sanz J; Yang A; Blouquit Y; Duchambon P; Assairi L; Craescu CT
    FEBS J; 2006 Oct; 273(19):4504-15. PubMed ID: 16956364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium and magnesium binding to human centrin 3 and interaction with target peptides.
    Cox JA; Tirone F; Durussel I; Firanescu C; Blouquit Y; Duchambon P; Craescu CT
    Biochemistry; 2005 Jan; 44(3):840-50. PubMed ID: 15654740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin.
    Grecu D; Irudayaraj VP; Martinez-Sanz J; Mallet JM; Assairi L
    Peptides; 2016 Apr; 78():77-86. PubMed ID: 26923803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal half of human centrin 2 behaves like a regulatory EF-hand domain.
    Matei E; Miron S; Blouquit Y; Duchambon P; Durussel I; Cox JA; Craescu CT
    Biochemistry; 2003 Feb; 42(6):1439-50. PubMed ID: 12578356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility and plasticity of human centrin 2 binding to the xeroderma pigmentosum group C protein (XPC) from nuclear excision repair.
    Yang A; Miron S; Mouawad L; Duchambon P; Blouquit Y; Craescu CT
    Biochemistry; 2006 Mar; 45(11):3653-63. PubMed ID: 16533048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery.
    Fischer T; Rodríguez-Navarro S; Pereira G; Rácz A; Schiebel E; Hurt E
    Nat Cell Biol; 2004 Sep; 6(9):840-8. PubMed ID: 15311284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kar1 binding to Sfi1 C-terminal regions anchors the SPB bridge to the nuclear envelope.
    Seybold C; Elserafy M; Rüthnick D; Ozboyaci M; Neuner A; Flottmann B; Heilemann M; Wade RC; Schiebel E
    J Cell Biol; 2015 Jun; 209(6):843-61. PubMed ID: 26076691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrin/Cdc31 is a novel regulator of protein degradation.
    Chen L; Madura K
    Mol Cell Biol; 2008 Mar; 28(5):1829-40. PubMed ID: 18160718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Getting to the gate: crystallization of a Sac3(CID):Sus1:Cdc31 complex.
    Wilmes GM; Guthrie C
    Mol Cell; 2009 Mar; 33(6):671-2. PubMed ID: 19328059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The N-terminus of Sfi1 and yeast centrin Cdc31 provide the assembly site for a new spindle pole body.
    Rüthnick D; Vitale J; Neuner A; Schiebel E
    J Cell Biol; 2021 Mar; 220(3):. PubMed ID: 33523111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae.
    McGuire AT; Keates RA; Cook S; Mangroo D
    Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly.
    Romier C; James N; Birck C; Cavarelli J; Vivarès C; Collart MA; Moras D
    J Mol Biol; 2007 May; 368(5):1292-306. PubMed ID: 17397863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export.
    Jani D; Lutz S; Marshall NJ; Fischer T; Köhler A; Ellisdon AM; Hurt E; Stewart M
    Mol Cell; 2009 Mar; 33(6):727-37. PubMed ID: 19328066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR structure of the DNA-binding domain of the cell cycle protein Mbp1 from Saccharomyces cerevisiae.
    Nair M; McIntosh PB; Frenkiel TA; Kelly G; Taylor IA; Smerdon SJ; Lane AN
    Biochemistry; 2003 Feb; 42(5):1266-73. PubMed ID: 12564929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomerization and divalent ion binding properties of the S100P protein: a Ca2+/Mg2+-switch model.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 1998 Oct; 283(3):679-94. PubMed ID: 9784376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structures of yeast Saccharomyces cerevisiae calmodulin in calcium- and target peptide-bound states reveal similarities and differences to vertebrate calmodulin.
    Ogura K; Kumeta H; Takahasi K; Kobashigawa Y; Yoshida R; Itoh H; Yazawa M; Inagaki F
    Genes Cells; 2012 Mar; 17(3):159-72. PubMed ID: 22280008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.