BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21714529)

  • 1. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis.
    Khan N; Cheng J; Pezacki JP; Berezovski MV
    Anal Chem; 2011 Aug; 83(16):6196-201. PubMed ID: 21714529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis.
    Berezovski MV; Khan N
    Methods Mol Biol; 2013; 1039():245-59. PubMed ID: 24026701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making DNA hybridization assays in capillary electrophoresis quantitative.
    Krylova SM; Wegman DW; Krylov SN
    Anal Chem; 2010 Jun; 82(11):4428-33. PubMed ID: 20429579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using DNA-binding proteins as an analytical tool.
    Berezovski M; Krylov SN
    J Am Chem Soc; 2003 Nov; 125(44):13451-4. PubMed ID: 14583040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein mediated miRNA detection and siRNA enrichment using p19.
    Jin J; Cid M; Poole CB; McReynolds LA
    Biotechniques; 2010 Jun; 48(6):xvii-xxiii. PubMed ID: 20569217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence polarization detection for affinity capillary electrophoresis.
    Le XC; Wan QH; Lam MT
    Electrophoresis; 2002 Mar; 23(6):903-8. PubMed ID: 11920875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals.
    Li J; Schachermeyer S; Wang Y; Yin Y; Zhong W
    Anal Chem; 2009 Dec; 81(23):9723-9. PubMed ID: 19831385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.
    Armas P; Nasif S; Calcaterra NB
    J Cell Biochem; 2008 Feb; 103(3):1013-36. PubMed ID: 17661353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA-RNA Hybrids.
    Fang CS; Kim KS; Yu B; Jon S; Kim MS; Yang H
    Anal Chem; 2017 Feb; 89(3):2024-2031. PubMed ID: 28208259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct quantification of single-molecules of microRNA by total internal reflection fluorescence microscopy.
    Chan HM; Chan LS; Wong RN; Li HW
    Anal Chem; 2010 Aug; 82(16):6911-8. PubMed ID: 20704380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative microRNA detection from precursor-microRNA-transfected hepatocellular carcinoma cells by capillary electrophoresis with dual-color laser-induced fluorescence.
    Yang TH; Ou DL; Hsu C; Huang SH; Chang PL
    Electrophoresis; 2012 Sep; 33(17):2769-76. PubMed ID: 22965724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification.
    Liu YQ; Zhang M; Yin BC; Ye BC
    Anal Chem; 2012 Jun; 84(12):5165-9. PubMed ID: 22655700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Quantitative Analysis of Multiple microRNAs (DQAMmiR) with Peptide Nucleic Acid Hybridization Probes.
    Hu L; Anand M; Krylova SM; Yang BB; Liu SK; Yousef GM; Krylov SN
    Anal Chem; 2018 Dec; 90(24):14610-14615. PubMed ID: 30451492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional comparative study of the complexes formed by viral ø29, Nf and GA-1 SSB proteins with DNA.
    Gascón I; Gutiérrez C; Salas M
    J Mol Biol; 2000 Mar; 296(4):989-99. PubMed ID: 10686098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive multiplex RNA quantification using capillary electrophoresis-based single-strand conformation polymorphism.
    Shin GW; Hwang HS; Nam HG; Oh MH; Jung GY
    Biotechnol Bioeng; 2010 May; 106(1):167-72. PubMed ID: 20014441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.
    Tan YN; Lee KH; Su X
    Anal Chem; 2011 Jun; 83(11):4251-7. PubMed ID: 21524056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal double-stranded RNA binding domains of Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing.
    Wu F; Yu L; Cao W; Mao Y; Liu Z; He Y
    Plant Cell; 2007 Mar; 19(3):914-25. PubMed ID: 17337628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enzyme-linked assay for the rapid quantification of microRNAs based on the viral suppressor of RNA silencing protein p19.
    Nasheri N; Cheng J; Singaravelu R; Wu P; McDermott MT; Pezacki JP
    Anal Biochem; 2011 May; 412(2):165-72. PubMed ID: 21284927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Synthesis of LNA-mCTP and its application for MicroRNA detection.
    Kore AR; Hodeib M; Hu Z
    Nucleosides Nucleotides Nucleic Acids; 2008 Jan; 27(1):1-17. PubMed ID: 18188765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical characterization of the complex between double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode.
    Chien CY; Xu Y; Xiao R; Aramini JM; Sahasrabudhe PV; Krug RM; Montelione GT
    Biochemistry; 2004 Feb; 43(7):1950-62. PubMed ID: 14967035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.