These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 21715089)
1. High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. Savina IN; English CJ; Whitby RL; Zheng Y; Leistner A; Mikhalovsky SV; Cundy AB J Hazard Mater; 2011 Sep; 192(3):1002-8. PubMed ID: 21715089 [TBL] [Abstract][Full Text] [Related]
2. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems. Gupta A; Yunus M; Sankararamakrishnan N Chemosphere; 2012 Jan; 86(2):150-5. PubMed ID: 22079302 [TBL] [Abstract][Full Text] [Related]
3. Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. Tawabini BS; Al-Khaldi SF; Khaled MM; Atieh MA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(3):215-23. PubMed ID: 21279891 [TBL] [Abstract][Full Text] [Related]
4. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Önnby L; Pakade V; Mattiasson B; Kirsebom H Water Res; 2012 Sep; 46(13):4111-20. PubMed ID: 22687522 [TBL] [Abstract][Full Text] [Related]
5. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Leupin OX; Hug SJ Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271 [TBL] [Abstract][Full Text] [Related]
6. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies. Beak DG; Wilkin RT J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132 [TBL] [Abstract][Full Text] [Related]
7. Γ-Al₂O₃-based nanocomposite adsorbents for arsenic(V) removal: assessing performance, toxicity and particle leakage. Onnby L; Svensson C; Mbundi L; Busquets R; Cundy A; Kirsebom H Sci Total Environ; 2014 Mar; 473-474():207-14. PubMed ID: 24370695 [TBL] [Abstract][Full Text] [Related]
8. Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. Tang W; Li Q; Gao S; Shang JK J Hazard Mater; 2011 Aug; 192(1):131-8. PubMed ID: 21684075 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Lakshmanan D; Clifford DA; Samanta G Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038 [TBL] [Abstract][Full Text] [Related]
10. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process. Guan X; Ma J; Dong H; Jiang L Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439 [TBL] [Abstract][Full Text] [Related]
11. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Kilianová M; Prucek R; Filip J; Kolařík J; Kvítek L; Panáček A; Tuček J; Zbořil R Chemosphere; 2013 Nov; 93(11):2690-7. PubMed ID: 24054133 [TBL] [Abstract][Full Text] [Related]
12. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Zhang QL; Lin YC; Chen X; Gao NY J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260 [TBL] [Abstract][Full Text] [Related]
13. Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process. Guan X; Dong H; Ma J; Jiang L Water Res; 2009 Aug; 43(15):3891-9. PubMed ID: 19573891 [TBL] [Abstract][Full Text] [Related]
14. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Mondal P; Majumder CB; Mohanty B J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333 [TBL] [Abstract][Full Text] [Related]
15. Chemical reactions between arsenic and zero-valent iron in water. Bang S; Johnson MD; Korfiatis GP; Meng X Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620 [TBL] [Abstract][Full Text] [Related]
16. Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. Hsu JC; Lin CJ; Liao CH; Chen ST J Hazard Mater; 2008 May; 153(1-2):817-26. PubMed ID: 17988793 [TBL] [Abstract][Full Text] [Related]
17. Investigation of sequential and enzymatic extraction of arsenic from drinking water distribution solids using ICP-MS. Creed PA; Gallawa CM; Young AR; Schwegel CA; Lytle D; Sorg TJ; Creed JT J Environ Monit; 2006 Sep; 8(9):968-72. PubMed ID: 16951758 [TBL] [Abstract][Full Text] [Related]
18. Iron oxide-loaded slag for arsenic removal from aqueous system. Zhang FS; Itoh H Chemosphere; 2005 Jul; 60(3):319-25. PubMed ID: 15924950 [TBL] [Abstract][Full Text] [Related]
19. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention. Jia Y; Demopoulos GP Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873 [TBL] [Abstract][Full Text] [Related]
20. Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Zhang G; Qu J; Liu H; Liu R; Wu R Water Res; 2007 May; 41(9):1921-8. PubMed ID: 17382991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]