BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21715667)

  • 1. Heuristically optimal path scanning for high-speed multiphoton circuit imaging.
    Sadovsky AJ; Kruskal PB; Kimmel JM; Ostmeyer J; Neubauer FB; MacLean JN
    J Neurophysiol; 2011 Sep; 106(3):1591-8. PubMed ID: 21715667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton minimal inertia scanning for fast acquisition of neural activity signals.
    Schuck R; Go MA; Garasto S; Reynolds S; Dragotti PL; Schultz SR
    J Neural Eng; 2018 Apr; 15(2):025003. PubMed ID: 29129832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution.
    Lillis KP; Eng A; White JA; Mertz J
    J Neurosci Methods; 2008 Jul; 172(2):178-84. PubMed ID: 18539336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling up multiphoton neural scanning: the SSA algorithm.
    Schuck R; Annecchino LA; Schultz SR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2837-40. PubMed ID: 25570582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope.
    Otsu Y; Bormuth V; Wong J; Mathieu B; Dugué GP; Feltz A; Dieudonné S
    J Neurosci Methods; 2008 Aug; 173(2):259-70. PubMed ID: 18634822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Imaging of Sensory-Evoked Activity of Entire Neurons Within the Awake Developing Brain Using Ultrafast AOD-Based Random-Access Two-Photon Microscopy.
    Sakaki KDR; Podgorski K; Dellazizzo Toth TA; Coleman P; Haas K
    Front Neural Circuits; 2020; 14():33. PubMed ID: 32612514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy.
    Iyer V; Hoogland TM; Saggau P
    J Neurophysiol; 2006 Jan; 95(1):535-45. PubMed ID: 16221746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain.
    Stirman JN; Smith IT; Kudenov MW; Smith SL
    Nat Biotechnol; 2016 Aug; 34(8):857-62. PubMed ID: 27347754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy.
    Iyer V; Losavio BE; Saggau P
    J Biomed Opt; 2003 Jul; 8(3):460-71. PubMed ID: 12880352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates.
    Botcherby EJ; Smith CW; Kohl MM; Débarre D; Booth MJ; Juškaitis R; Paulsen O; Wilson T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2919-24. PubMed ID: 22315405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second Harmonic Imaging of Membrane Potential.
    Loew LM; Lewis A
    Adv Exp Med Biol; 2015; 859():473-92. PubMed ID: 26238065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended depth of field microscopy for rapid volumetric two-photon imaging.
    Thériault G; De Koninck Y; McCarthy N
    Opt Express; 2013 Apr; 21(8):10095-104. PubMed ID: 23609714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifocal fluorescence microscope for fast optical recordings of neuronal action potentials.
    Shtrahman M; Aharoni DB; Hardy NF; Buonomano DV; Arisaka K; Otis TS
    Biophys J; 2015 Feb; 108(3):520-9. PubMed ID: 25650920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Accuracy Detection of Neuronal Ensemble Activity in Two-Photon Functional Microscopy Using Smart Line Scanning.
    Brondi M; Moroni M; Vecchia D; Molano-Mazón M; Panzeri S; Fellin T
    Cell Rep; 2020 Feb; 30(8):2567-2580.e6. PubMed ID: 32101736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoded multisite two-photon microscopy.
    Ducros M; Goulam Houssen Y; Bradley J; de Sars V; Charpak S
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13138-43. PubMed ID: 23798397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method to reconstruct neuronal action potential train from two-photon calcium imaging.
    Quan T; Liu X; Lv X; Chen WR; Zeng S
    J Biomed Opt; 2010; 15(6):066002. PubMed ID: 21198176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized temporally deconvolved Ca²⁺ imaging allows identification of spatiotemporal activity patterns of CA1 hippocampal ensembles.
    Pfeiffer T; Draguhn A; Reichinnek S; Both M
    Neuroimage; 2014 Jul; 94():239-249. PubMed ID: 24650598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator.
    Tischbirek C; Birkner A; Jia H; Sakmann B; Konnerth A
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11377-82. PubMed ID: 26305966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automating Event-detection of Brain Neuron Synaptic Activity and Action Potential Firing in vivo using a Random-access Multiphoton Laser Scanning Microscope for Real-time Analysis.
    Sakaki KDR; Coleman P; Toth TD; Guerrier C; Haas K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-7. PubMed ID: 30440280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Two-Photon Imaging In Vivo with a Red-Shifted Calcium Indicator.
    Birkner A; Konnerth A
    Methods Mol Biol; 2019; 1929():15-26. PubMed ID: 30710264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.