These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 21715741)

  • 1. Ion erosion induced nanogrooves: temporal evolution and azimuth dependence.
    Wormeester H; Poelsema B
    J Phys Condens Matter; 2009 Jun; 21(22):224002. PubMed ID: 21715741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic physical etching for versatile novel design of well ordered self-affine nanogrooves.
    van Dijken S; de Bruin D; Poelsema B
    Phys Rev Lett; 2001 May; 86(20):4608-11. PubMed ID: 11384295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanogroove formation by ion irradiation on indentation-modified amorphous SiO(2).
    Pan J; Takeda Y; Amekura H; Nakayama Y; Song M; Kishimoto N
    Nanotechnology; 2008 Sep; 19(37):375306. PubMed ID: 21832550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of a nanogroove-striped NiO surface using atomic steps.
    Akiba S; Matsuda A; Isa H; Kasahara M; Sato S; Watanabe T; Hara W; Yoshimoto M
    Nanotechnology; 2006 Aug; 17(16):4053-6. PubMed ID: 21727537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Nanogrooves with Sub-5 nm Periodicity Using Local Silicification at the Interspace between a Si Substrate and Lyotropic Liquid Crystals.
    Hara S; Wada H; Shimojima A; Kuroda K
    ACS Nano; 2017 May; 11(5):5160-5166. PubMed ID: 28481508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is keV ion-induced pattern formation on Si(001) caused by metal impurities?
    Macko S; Frost F; Ziberi B; Förster DF; Michely T
    Nanotechnology; 2010 Feb; 21(8):85301. PubMed ID: 20097973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing self-organized nanopatterns on Si by ion irradiation and metal co-deposition.
    Zhang K; Bobes O; Hofsäss H
    Nanotechnology; 2014 Feb; 25(8):085301. PubMed ID: 24492328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Step edge sputtering yield at grazing incidence ion bombardment.
    Hansen H; Polop C; Michely T; Friedrich A; Urbassek HM
    Phys Rev Lett; 2004 Jun; 92(24):246106. PubMed ID: 15245111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An atomic force microscopy statistical analysis of laser-induced azo-polyimide periodic tridimensional nanogrooves.
    Stoica I; Epure L; Sava I; Damian V; Hurduc N
    Microsc Res Tech; 2013 Sep; 76(9):914-23. PubMed ID: 23801415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approximately 30 nm Nanogroove Formation on Single Crystalline Silicon Surface under Pulsed Nanosecond Laser Irradiation.
    Lin Z; Ji L; Hong M
    Nano Lett; 2022 Sep; 22(17):7005-7010. PubMed ID: 35980159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale crater function model for ion-induced pattern formation in silicon.
    Kalyanasundaram N; Freund JB; Johnson HT
    J Phys Condens Matter; 2009 Jun; 21(22):224018. PubMed ID: 21715756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal evolution on SiO
    Kumar M; Datta DP; Basu T; Garg SK; Hofsäss H; Som T
    J Phys Condens Matter; 2018 Aug; 30(33):334001. PubMed ID: 29978837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Monte Carlo simulations compared with continuum models and experimental properties of pattern formation during ion beam sputtering.
    Chason E; Chan WL
    J Phys Condens Matter; 2009 Jun; 21(22):224016. PubMed ID: 21715754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature Ga surface diffusion from focused ion beam milled grooves.
    Mikkelsen A; Hilner E; Andersen JN; Ghatnekar-Nilsson S; Montelius L; Zakharov AA
    Nanotechnology; 2009 Aug; 20(32):325304. PubMed ID: 19620748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux dependent MeV self-ion-induced effects on Au nanostructures: dramatic mass transport and nanosilicide formation.
    Ghatak J; Umananda Bhatta M; Sundaravel B; Nair KG; Liou SC; Chen CH; Wang YL; Satyam PV
    Nanotechnology; 2008 Aug; 19(32):325602. PubMed ID: 21828815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The morphology of amorphous SiO(2) surfaces during low energy ion sputtering.
    Keller A; Facsko S; Möller W
    J Phys Condens Matter; 2009 Dec; 21(49):495305. PubMed ID: 21836193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques.
    Carbone D; Biermanns A; Ziberi B; Frost F; Plantevin O; Pietsch U; Metzger TH
    J Phys Condens Matter; 2009 Jun; 21(22):224007. PubMed ID: 21715746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process.
    Urbánek M; Uhlír V; Bábor P; Kolíbalová E; Hrncír T; Spousta J; Sikola T
    Nanotechnology; 2010 Apr; 21(14):145304. PubMed ID: 20215654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nanogroove geometry on adipogenic differentiation.
    Kim MS; Kim AY; Jang KJ; Kim JH; Kim JB; Suh KY
    Nanotechnology; 2011 Dec; 22(49):494017. PubMed ID: 22101869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.