These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 21715749)

  • 1. Nanopatterning by multiple-ion-beam sputtering.
    Joe M; Kim JH; Choi C; Kahng B; Kim JS
    J Phys Condens Matter; 2009 Jun; 21(22):224011. PubMed ID: 21715749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots.
    Sánchez-García JA; Vázquez L; Gago R; Redondo-Cubero A; Albella JM; Czigány Z
    Nanotechnology; 2008 Sep; 19(35):355306. PubMed ID: 21828846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation.
    Sánchez-García JA; Gago R; Caillard R; Redondo-Cubero A; Martin-Gago JA; Palomares FJ; Fernández M; Vázquez L
    J Phys Condens Matter; 2009 Jun; 21(22):224009. PubMed ID: 21715747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the auxiliary atomic ion beam in C60(+)-Ar+ co-sputtering.
    Lin WC; Liu CP; Kuo CH; Chang HY; Chang CJ; Hsieh TH; Lee SH; You YW; Kao WL; Yen GJ; Huang CC; Shyue JJ
    Analyst; 2011 Mar; 136(5):941-6. PubMed ID: 21152650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.
    Gago R; Jaafar M; Palomares FJ
    J Phys Condens Matter; 2018 Jul; 30(26):264003. PubMed ID: 29762135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-dimensional pattern of Au nanodots by ion-beam sputtering: formation and mechanism.
    Kim JH; Ha NB; Kim JS; Joe M; Lee KR; Cuerno R
    Nanotechnology; 2011 Jul; 22(28):285301. PubMed ID: 21625038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamic-secondary ion mass spectrometry (D-SIMS) ionized by co-sputtering with C60+ and Ar+.
    You YW; Chang HY; Lin WC; Kuo CH; Lee SH; Kao WL; Yen GJ; Chang CJ; Liu CP; Huang CC; Liao HY; Shyue JJ
    Rapid Commun Mass Spectrom; 2011 Oct; 25(19):2897-904. PubMed ID: 21913268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is keV ion-induced pattern formation on Si(001) caused by metal impurities?
    Macko S; Frost F; Ziberi B; Förster DF; Michely T
    Nanotechnology; 2010 Feb; 21(8):85301. PubMed ID: 20097973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopatterning by ion beam sputtering in unconventional formats.
    Kim JH; Yoon SM; Jo S; Seo J; Kim JS
    J Phys Condens Matter; 2018 Jul; 30(27):274004. PubMed ID: 29798933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and chemical sputterings of solid surfaces irradiated by ethanol cluster ion beams.
    Takaoka GH; Kawashita M; Okada T
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02C503. PubMed ID: 18315246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.
    Moberlychan WJ
    J Phys Condens Matter; 2009 Jun; 21(22):224013. PubMed ID: 21715751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques.
    Carbone D; Biermanns A; Ziberi B; Frost F; Plantevin O; Pietsch U; Metzger TH
    J Phys Condens Matter; 2009 Jun; 21(22):224007. PubMed ID: 21715746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion beam sputtering nanopatterning of thin metal films: the synergism of kinetic self-organization and coarsening.
    Stepanova M; Dew SK
    J Phys Condens Matter; 2009 Jun; 21(22):224014. PubMed ID: 21715752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating discrete models of pattern formation by ion beam sputtering.
    Hartmann AK; Kree R; Yasseri T
    J Phys Condens Matter; 2009 Jun; 21(22):224015. PubMed ID: 21715753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independence of interrupted coarsening on initial system order: ion-beam nanopatterning of amorphous versus crystalline silicon targets.
    Muñoz-García J; Gago R; Cuerno R; Sánchez-García JA; Redondo-Cubero A; Castro M; Vázquez L
    J Phys Condens Matter; 2012 Sep; 24(37):375302. PubMed ID: 22913935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion beam sputtering induced nanostructuring of polycrystalline metal films.
    Ghose D
    J Phys Condens Matter; 2009 Jun; 21(22):224001. PubMed ID: 21715740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-erosion induced surface nanoporosity and nanotopography on Si.
    Süle P
    J Chem Phys; 2011 Jun; 134(24):244706. PubMed ID: 21721656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.
    Liao W; Dai Y; Xie X; Zhou L
    Opt Express; 2014 Jan; 22(1):377-86. PubMed ID: 24514998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.