These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21715753)

  • 1. Simulating discrete models of pattern formation by ion beam sputtering.
    Hartmann AK; Kree R; Yasseri T
    J Phys Condens Matter; 2009 Jun; 21(22):224015. PubMed ID: 21715753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic Monte Carlo simulations compared with continuum models and experimental properties of pattern formation during ion beam sputtering.
    Chason E; Chan WL
    J Phys Condens Matter; 2009 Jun; 21(22):224016. PubMed ID: 21715754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion beam sputtering nanopatterning of thin metal films: the synergism of kinetic self-organization and coarsening.
    Stepanova M; Dew SK
    J Phys Condens Matter; 2009 Jun; 21(22):224014. PubMed ID: 21715752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.
    Muñoz-García J; Castro M; Cuerno R
    Phys Rev Lett; 2006 Mar; 96(8):086101. PubMed ID: 16606197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion beam induced surface pattern formation and stable travelling wave solutions.
    Numazawa S; Smith R
    J Phys Condens Matter; 2013 Mar; 25(9):095003. PubMed ID: 23334366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.
    Gago R; Jaafar M; Palomares FJ
    J Phys Condens Matter; 2018 Jul; 30(26):264003. PubMed ID: 29762135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is keV ion-induced pattern formation on Si(001) caused by metal impurities?
    Macko S; Frost F; Ziberi B; Förster DF; Michely T
    Nanotechnology; 2010 Feb; 21(8):85301. PubMed ID: 20097973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-dimensional pattern of Au nanodots by ion-beam sputtering: formation and mechanism.
    Kim JH; Ha NB; Kim JS; Joe M; Lee KR; Cuerno R
    Nanotechnology; 2011 Jul; 22(28):285301. PubMed ID: 21625038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The morphology of amorphous SiO(2) surfaces during low energy ion sputtering.
    Keller A; Facsko S; Möller W
    J Phys Condens Matter; 2009 Dec; 21(49):495305. PubMed ID: 21836193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion beam sputtering induced nanostructuring of polycrystalline metal films.
    Ghose D
    J Phys Condens Matter; 2009 Jun; 21(22):224001. PubMed ID: 21715740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale crater function model for ion-induced pattern formation in silicon.
    Kalyanasundaram N; Freund JB; Johnson HT
    J Phys Condens Matter; 2009 Jun; 21(22):224018. PubMed ID: 21715756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrotron x-ray scattering from metal surfaces nanostructured by IBS.
    Boragno C; Felici R
    J Phys Condens Matter; 2009 Jun; 21(22):224006. PubMed ID: 21715745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organized ordering of nanostructures produced by ion-beam sputtering.
    Castro M; Cuerno R; Vázquez L; Gago R
    Phys Rev Lett; 2005 Jan; 94(1):016102. PubMed ID: 15698100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation.
    Sánchez-García JA; Gago R; Caillard R; Redondo-Cubero A; Martin-Gago JA; Palomares FJ; Fernández M; Vázquez L
    J Phys Condens Matter; 2009 Jun; 21(22):224009. PubMed ID: 21715747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low energy Ar+ ion beam irradiation effects on Si ripple pattern.
    Pahlovy SA; Yanagimoto K; Miyamoto I
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1068-73. PubMed ID: 21456140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of metal surfaces nanostructured by ion beam sputtering.
    Buatier de Mongeot F; Valbusa U
    J Phys Condens Matter; 2009 Jun; 21(22):224022. PubMed ID: 21715760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of nanoscale focused neon ion beam sputtering of copper: elucidating resolution limits and sub-surface damage.
    Timilsina R; Tan S; Livengood R; Rack PD
    Nanotechnology; 2014 Dec; 25(48):485704. PubMed ID: 25387461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of collision cascades to sputtering and radiation damage.
    Thompson MW
    Philos Trans A Math Phys Eng Sci; 2004 Jan; 362(1814):5-28. PubMed ID: 15306274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.