These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21715778)

  • 1. Transmission and scarring in graphene quantum dots.
    Huang L; Lai YC; Ferry DK; Akis R; Goodnick SM
    J Phys Condens Matter; 2009 Aug; 21(34):344203. PubMed ID: 21715778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots.
    Huang L; Yang R; Lai YC; Ferry DK
    J Phys Condens Matter; 2013 Feb; 25(8):085502. PubMed ID: 23343960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of geometrical rotation on conductance fluctuations in graphene quantum dots.
    Ying L; Huang L; Lai YC; Zhang Y
    J Phys Condens Matter; 2013 Mar; 25(10):105802. PubMed ID: 23395833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR; Cheng SG
    J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.
    Usman M; Tan YH; Ryu H; Ahmed SS; Krenner HJ; Boykin TB; Klimeck G
    Nanotechnology; 2011 Aug; 22(31):315709. PubMed ID: 21737873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dots and spin qubits in graphene.
    Recher P; Trauzettel B
    Nanotechnology; 2010 Jul; 21(30):302001. PubMed ID: 20603538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adiabatic charge and spin pumping through interacting quantum dots.
    Deus F; Hernández AR; Continentino MA
    J Phys Condens Matter; 2012 Sep; 24(35):356001. PubMed ID: 22885672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transport properties of graphene quantum dots with non-centro-symmetric Gaussian deformation.
    Poszwa A
    Sci Rep; 2022 Jun; 12(1):9908. PubMed ID: 35701530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regular conductance fluctuations indicative of quasi-ballistic transport in bilayer graphene.
    Ujiie Y; Motooka S; Morimoto T; Aoki N; Ferry DK; Bird JP; Ochiai Y
    J Phys Condens Matter; 2009 Sep; 21(38):382202. PubMed ID: 21832362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark field transmission electron microscope images of III-V quantum dot structures.
    Beanland R
    Ultramicroscopy; 2005 Jan; 102(2):115-25. PubMed ID: 15590135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and current noise characteristics of a T-shape double-quantum-dot system.
    Brown K; Crisan M; Tifrea I
    J Phys Condens Matter; 2009 May; 21(21):215604. PubMed ID: 21825553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene based quantum dots.
    Zhang HG; Hu H; Pan Y; Mao JH; Gao M; Guo HM; Du SX; Greber T; Gao HJ
    J Phys Condens Matter; 2010 Aug; 22(30):302001. PubMed ID: 21399330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy spectrum and density of states for a graphene quantum dot in a magnetic field.
    Horing NJ; Liu SY
    J Phys Condens Matter; 2010 Jan; 22(2):025502. PubMed ID: 21386256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum spin transport in carbon chains.
    Zanolli Z; Onida G; Charlier JC
    ACS Nano; 2010 Sep; 4(9):5174-80. PubMed ID: 20738122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.