These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 21715779)

  • 1. Quantum transport through a graphene nanoribbon-superconductor junction.
    Sun QF; Xie XC
    J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport properties of armchair graphene nanoribbon junctions between graphene electrodes.
    Motta C; Sánchez-Portal D; Trioni MI
    Phys Chem Chem Phys; 2012 Aug; 14(30):10683-9. PubMed ID: 22743740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Andreev reflection of zero line mode in graphene-superconductor hybrid junction.
    Feng L; Cheng SG
    J Phys Condens Matter; 2015 Apr; 27(12):125002. PubMed ID: 25688635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction.
    Chen JC; Cheng SG; Shen SQ; Sun QF
    J Phys Condens Matter; 2010 Jan; 22(3):035301. PubMed ID: 21386283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR; Cheng SG
    J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermopower and conductance for a graphene p-n junction.
    Lv SH; Feng SB; Li YX
    J Phys Condens Matter; 2012 Apr; 24(14):145801. PubMed ID: 22410842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport properties of graphene nanoribbons with side-attached organic molecules.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum magnetotransport oscillations in graphene nanoribbons coupled to superconductors.
    Takagaki Y
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33862610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Andreev reflection in graphene nanoribbons induced by
    Takagaki Y
    J Phys Condens Matter; 2023 Dec; 36(12):. PubMed ID: 38064746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent currents in a graphene ring with armchair edges.
    Huang BL; Chang MC; Mou CY
    J Phys Condens Matter; 2012 Jun; 24(24):245304. PubMed ID: 22617621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of magnetic field and disorders on the electronic transport in graphene nanoribbons.
    Kumar SB; Jalil MB; Tan SG; Liang G
    J Phys Condens Matter; 2010 Sep; 22(37):375303. PubMed ID: 21403192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-parameter charge pump in a zigzag graphene nanoribbon.
    Gu Y; Yang YH; Wang J; Chan KS
    J Phys Condens Matter; 2009 Oct; 21(40):405301. PubMed ID: 21832408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of symmetry in quantum blocking of Andreev reflection in graphene nanoribbons side-terminated by superconductors.
    Takagaki Y
    J Phys Condens Matter; 2023 May; 35(31):. PubMed ID: 37084742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable Andreev retroreflection and specular Andreev reflection in a four-terminal graphene-superconductor hybrid system.
    Cheng SG; Xing Y; Wang J; Sun QF
    Phys Rev Lett; 2009 Oct; 103(16):167003. PubMed ID: 19905718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chirality effect in disordered graphene ribbon junctions.
    Long W
    J Phys Condens Matter; 2012 May; 24(17):175302. PubMed ID: 22469635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-dependent transport for armchair-edge graphene nanoribbons between ferromagnetic leads.
    Zhou B; Chen X; Zhou B; Ding KH; Zhou G
    J Phys Condens Matter; 2011 Apr; 23(13):135304. PubMed ID: 21415476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges.
    Bilić A; Sanvito S
    J Chem Phys; 2013 Jan; 138(1):014704. PubMed ID: 23298054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.