These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21715810)

  • 41. Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.
    Pateras A; Park J; Ahn Y; Tilka JA; Holt MV; Reichl C; Wegscheider W; Baart TA; Dehollain JP; Mukhopadhyay U; Vandersypen LMK; Evans PG
    Nano Lett; 2018 May; 18(5):2780-2786. PubMed ID: 29664645
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spin-flip transitions in self-assembled quantum dots.
    Stavrou VN
    J Phys Condens Matter; 2017 Dec; 29(48):485301. PubMed ID: 29116940
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-time correlation in non-Markovian dephasing of an exciton-phonon system in InAs quantum dots.
    Tahara H; Ogawa Y; Minami F; Akahane K; Sasaki M
    Phys Rev Lett; 2014 Apr; 112(14):147404. PubMed ID: 24766013
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phonon anharmonicity-induced decoherence slowing down in exciton-phonon systems.
    Pouthier V
    J Phys Condens Matter; 2010 Jun; 22(25):255601. PubMed ID: 21393804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coherent properties of a two-level system based on a quantum-dot photodiode.
    Zrenner A; Beham E; Stufler S; Findeis F; Bichler M; Abstreiter G
    Nature; 2002 Aug; 418(6898):612-4. PubMed ID: 12167853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Suppression of decoherence tied to electron-phonon coupling in telecom-compatible quantum dots: low-threshold reappearance regime for quantum state inversion.
    Ramachandran A; Wilbur GR; O'Neal S; Deppe DG; Hall KC
    Opt Lett; 2020 Dec; 45(23):6498-6501. PubMed ID: 33258845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phonon-mediated versus coulombic backaction in quantum dot circuits.
    Harbusch D; Taubert D; Tranitz HP; Wegscheider W; Ludwig S
    Phys Rev Lett; 2010 May; 104(19):196801. PubMed ID: 20866986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions.
    Uskov AV; Jauho A; Tromborg B; Mork J; Lang R
    Phys Rev Lett; 2000 Aug; 85(7):1516-9. PubMed ID: 10970543
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics.
    Grange T; Somaschi N; Antón C; De Santis L; Coppola G; Giesz V; Lemaître A; Sagnes I; Auffèves A; Senellart P
    Phys Rev Lett; 2017 Jun; 118(25):253602. PubMed ID: 28696749
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling.
    Sadeghi SM; Wing WJ; Gutha RR
    Nanotechnology; 2015 Feb; 26(8):085202. PubMed ID: 25648526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Semiclassical study of quantum coherence and isotope effects in ultrafast electron transfer reactions coupled to a proton and a phonon bath.
    Venkataraman C
    J Chem Phys; 2011 Nov; 135(20):204503. PubMed ID: 22128939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coherent manipulation of semiconductor quantum bits with terahertz radiation.
    Cole BE; Williams JB; King BT; Sherwin MS; Stanley CR
    Nature; 2001 Mar; 410(6824):60-3. PubMed ID: 11242038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Geometrical spin dephasing in quantum dots.
    San-Jose P; Zarand G; Shnirman A; Schön G
    Phys Rev Lett; 2006 Aug; 97(7):076803. PubMed ID: 17026261
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action.
    Ruello P; Gusev VE
    Ultrasonics; 2015 Feb; 56():21-35. PubMed ID: 25038958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noise Suppression Using Symmetric Exchange Gates in Spin Qubits.
    Martins F; Malinowski FK; Nissen PD; Barnes E; Fallahi S; Gardner GC; Manfra MJ; Marcus CM; Kuemmeth F
    Phys Rev Lett; 2016 Mar; 116(11):116801. PubMed ID: 27035316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic switching of hole character and single photon polarization using the quantum confined Stark effect in quantum dot-in-dot structures.
    Troncale V; Karlsson KF; Kapon E
    Nanotechnology; 2010 Jul; 21(28):285202. PubMed ID: 20562488
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantum confinement and magnetic-field effects on the electron g factor in GaAs-(Ga, Al)As cylindrical quantum dots.
    Mejía-Salazar JR; Porras-Montenegro N; Oliveira LE
    J Phys Condens Matter; 2009 Nov; 21(45):455302. PubMed ID: 21694007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules.
    Koole R; Liljeroth P; de Mello Donega C; Vanmaekelbergh D; Meijerink A
    J Am Chem Soc; 2006 Aug; 128(32):10436-41. PubMed ID: 16895408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mode locking of electron spin coherences in singly charged quantum dots.
    Greilich A; Yakovlev DR; Shabaev A; Efros AL; Yugova IA; Oulton R; Stavarache V; Reuter D; Wieck A; Bayer M
    Science; 2006 Jul; 313(5785):341-5. PubMed ID: 16857937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.