These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21715868)

  • 1. Interplay between α(Ti) nucleation and growth during peritectic solidification investigated by phase-field simulations.
    Eiken J; Apel M; Witusiewicz VT; Zollinger J; Hecht U
    J Phys Condens Matter; 2009 Nov; 21(46):464104. PubMed ID: 21715868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous nucleation and growth of the β(Ti) phase in the Ti-Al system-experiments and model calculations.
    Gosslar D; Hartig C; Günther R; Hecht U; Bormann R
    J Phys Condens Matter; 2009 Nov; 21(46):464111. PubMed ID: 21715875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability.
    Lo TS; Karma A; Plapp M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031504. PubMed ID: 11308654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects and mechanism of ultrasonic irradiation on solidification microstructure and mechanical properties of binary TiAl alloys.
    Chen R; Zheng D; Ma T; Ding H; Su Y; Guo J; Fu H
    Ultrason Sonochem; 2017 Sep; 38():120-133. PubMed ID: 28633811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the transition from primary to peritectic phase growth during solidification of undercooled Ni-Zr alloy levitated by electromagnetic field.
    Lü P; Zhou K; Wang HP
    Sci Rep; 2016 Dec; 6():39042. PubMed ID: 27958359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct formation of peritectic phase but no primary phase appearance within Ni83.25Zr16.75 peritectic alloy during free fall.
    Lü P; Wang HP
    Sci Rep; 2016 Mar; 6():22641. PubMed ID: 26935165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refining Mechanism of 7075 Al Alloy by In-Situ TiB₂ Particles.
    Gan G; Yang B; Zhang B; Jiang X; Shi Y; Wu Y
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review on the Analysis of Thermal and Thermodynamic Aspects of Grain Refinement of Aluminum-Silicon-Based Alloys.
    Samuel E; Samuel AM; Songmene V; Samuel FH
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ultrasonic melt treatment on the formation of primary intermetallics and related grain refinement in aluminum alloys.
    Zhang L; Eskin DG; Katgerman L
    J Mater Sci; 2011; 46(15):5252-5259. PubMed ID: 36039104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview: Application of heterogeneous nucleation in grain-refining of metals.
    Greer AL
    J Chem Phys; 2016 Dec; 145(21):211704. PubMed ID: 28799349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic Effect of La and TiB
    Zhang L; Song Y; Yang L; Zhao J; He J; Jiang H
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of growth rate on microstructure evolution in directionally solidified Ti-47Al alloy.
    Liu T; Tao J; Cai X; Chen D; Li J; Luo L; Cheng Z; Su Y
    Heliyon; 2022 Jan; 8(1):e08704. PubMed ID: 35028474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys.
    Li X; Lu Z; Fautrelle Y; Gagnoud A; Moreau R; Ren Z
    Sci Rep; 2016 Nov; 6():37872. PubMed ID: 27886265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: I. Transitions in the one-phase liquid region.
    Tóth GI; Gránásy L
    J Chem Phys; 2007 Aug; 127(7):074709. PubMed ID: 17718629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of a transverse static magnetic field on the orientation and peritectic reaction of Cu-10.5 at.% Sn peritectic alloy.
    Lu Z; Fautrelle Y; Ren Z; Li X
    Sci Rep; 2018 Jul; 8(1):10641. PubMed ID: 30006519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of In-Situ Reaction, Extrusion Ratio and CeO
    Bi Q; Luo X; Guo L; Zuo X; Huang B; Yi J; Zhou Y
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ti
    Song X; Cui H; Han Y; Ding L; Song Q
    ACS Appl Mater Interfaces; 2018 May; 10(19):16783-16792. PubMed ID: 29688692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heat treatment on evolution of microstructure of boron free and boron containing biomedical Ti-13Zr-13Nb alloys.
    Majumdar P
    Micron; 2012 Aug; 43(8):876-86. PubMed ID: 22459252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On migration of primary/peritectic interface during interrupted directional solidification of Sn-Ni peritectic alloy.
    Peng P; Li X; Li J; Su Y; Guo J; Fu H
    Sci Rep; 2016 Apr; 6():24512. PubMed ID: 27075006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.