BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 21715882)

  • 1. Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory.
    Winter D; Virnau P; Binder K
    J Phys Condens Matter; 2009 Nov; 21(46):464118. PubMed ID: 21715882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo test of the classical theory for heterogeneous nucleation barriers.
    Winter D; Virnau P; Binder K
    Phys Rev Lett; 2009 Nov; 103(22):225703. PubMed ID: 20366110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo tests of nucleation concepts in the lattice gas model.
    Schmitz F; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053302. PubMed ID: 23767652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor-to-droplet transition in a Lennard-Jones fluid: simulation study of nucleation barriers using the ghost field method.
    Neimark AV; Vishnyakov A
    J Phys Chem B; 2005 Mar; 109(12):5962-76. PubMed ID: 16851651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular approach to heterogeneous nucleation.
    Zapadinsky E; Lauri A; Kulmala M
    J Chem Phys; 2005 Mar; 122(11):114709. PubMed ID: 15836245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of fluid-solid coexistence in finite volumes: a method to study the properties of wall-attached crystalline nuclei.
    Deb D; Winkler A; Virnau P; Binder K
    J Chem Phys; 2012 Apr; 136(13):134710. PubMed ID: 22482583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of vapor-liquid coexistence in finite volumes: a method to compute the surface free energy of droplets.
    Schrader M; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061104. PubMed ID: 19658470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous critical nucleation on a completely wettable substrate.
    Iwamatsu M
    J Chem Phys; 2011 Jun; 134(23):234709. PubMed ID: 21702578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous nucleation in vapor-liquid phase transition of Lennard-Jones fluids: a density functional theory approach.
    Ghosh S; Ghosh SK
    J Chem Phys; 2011 Jan; 134(2):024502. PubMed ID: 21241115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case.
    Trobo ML; Albano EV; Binder K
    J Chem Phys; 2018 Mar; 148(11):114701. PubMed ID: 29566529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inclusion of line tension effect in classical nucleation theory for heterogeneous nucleation: A rigorous thermodynamic formulation and some unique conclusions.
    Singha SK; Das PK; Maiti B
    J Chem Phys; 2015 Mar; 142(10):104706. PubMed ID: 25770556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview: Understanding nucleation phenomena from simulations of lattice gas models.
    Binder K; Virnau P
    J Chem Phys; 2016 Dec; 145(21):211701. PubMed ID: 28799401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical consideration of wetting on a cylindrical pillar defect: pinning energy and penetrating phenomena.
    Mayama H; Nonomura Y
    Langmuir; 2011 Apr; 27(7):3550-60. PubMed ID: 21341783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface induced nucleation of a Lennard-Jones system on an implicit surface at sub-freezing temperatures: a comparison with the classical nucleation theory.
    Loeffler TD; Chen B
    J Chem Phys; 2013 Dec; 139(23):234707. PubMed ID: 24359386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?
    Das SK; Egorov SA; Virnau P; Winter D; Binder K
    J Phys Condens Matter; 2018 Jun; 30(25):255001. PubMed ID: 29741496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach.
    Xu W; Lan Z; Peng BL; Wen RF; Ma XH
    J Chem Phys; 2015 Feb; 142(5):054701. PubMed ID: 25662654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.