These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure. Kuchin I; Starov V Langmuir; 2015 May; 31(19):5345-52. PubMed ID: 25901520 [TBL] [Abstract][Full Text] [Related]
4. Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels. Mattia D; Starov V; Semenov S J Colloid Interface Sci; 2012 Oct; 384(1):149-56. PubMed ID: 22809548 [TBL] [Abstract][Full Text] [Related]
5. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls. Kuchin IV; Starov VM Langmuir; 2016 May; 32(21):5333-40. PubMed ID: 27163285 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of Wetting and Spreading of Droplets over Various Substrates. Arjmandi-Tash O; Kovalchuk NM; Trybala A; Kuchin IV; Starov V Langmuir; 2017 May; 33(18):4367-4385. PubMed ID: 28190350 [TBL] [Abstract][Full Text] [Related]
9. Drop rebound after impact: the role of the receding contact angle. Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086 [TBL] [Abstract][Full Text] [Related]
10. Spreading and retraction as a function of drop size. Ghosh M; Stebe KJ Adv Colloid Interface Sci; 2010 Dec; 161(1-2):61-76. PubMed ID: 20817136 [TBL] [Abstract][Full Text] [Related]
11. On some relations between advancing, receding and Young's contact angles. Chibowski E Adv Colloid Interface Sci; 2007 May; 133(1):51-9. PubMed ID: 17448435 [TBL] [Abstract][Full Text] [Related]
13. Line energy and the relation between advancing, receding, and young contact angles. Tadmor R Langmuir; 2004 Aug; 20(18):7659-64. PubMed ID: 15323516 [TBL] [Abstract][Full Text] [Related]
14. A thermodynamic model of contact angle hysteresis. Makkonen L J Chem Phys; 2017 Aug; 147(6):064703. PubMed ID: 28810760 [TBL] [Abstract][Full Text] [Related]
15. Simulation analysis of contact angles and retention forces of liquid drops on inclined surfaces. Santos MJ; Velasco S; White JA Langmuir; 2012 Aug; 28(32):11819-26. PubMed ID: 22812718 [TBL] [Abstract][Full Text] [Related]
16. Contact line motion and dynamic wetting of nanofluid solutions. Sefiane K; Skilling J; MacGillivray J Adv Colloid Interface Sci; 2008 May; 138(2):101-20. PubMed ID: 18275931 [TBL] [Abstract][Full Text] [Related]
17. Spreading Dynamics of Polydimethylsiloxane Drops: Crossover from Laplace to Van der Waals Spreading. Pérez E; Schäffer E; Steiner U J Colloid Interface Sci; 2001 Feb; 234(1):178-193. PubMed ID: 11161505 [TBL] [Abstract][Full Text] [Related]
18. Pressure dependence of the contact angle. Wu J; Farouk T; Ward CA J Phys Chem B; 2007 Jun; 111(22):6189-97. PubMed ID: 17497917 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium contact angle or the most-stable contact angle? Montes Ruiz-Cabello FJ; Rodríguez-Valverde MA; Cabrerizo-Vílchez MA Adv Colloid Interface Sci; 2014 Apr; 206():320-7. PubMed ID: 24140073 [TBL] [Abstract][Full Text] [Related]
20. Drops sitting on a tilted plate: receding and advancing pinning. Chou TH; Hong SJ; Sheng YJ; Tsao HK Langmuir; 2012 Mar; 28(11):5158-66. PubMed ID: 22372858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]