These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Optimization of poly-epsilon-lysine production by Streptomyces noursei NRRL 5126. Bankar SB; Singhal RS Bioresour Technol; 2010 Nov; 101(21):8370-5. PubMed ID: 20591658 [TBL] [Abstract][Full Text] [Related]
3. Optimization of medium for enhancement of ε-poly-L-lysine production by Streptomyces sp. M-Z18 with glycerol as carbon source. Chen X; Tang L; Li S; Liao L; Zhang J; Mao Z Bioresour Technol; 2011 Jan; 102(2):1727-32. PubMed ID: 20846854 [TBL] [Abstract][Full Text] [Related]
4. Production of ε-poly-L: -lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Chen XS; Li S; Liao LJ; Ren XD; Li F; Tang L; Zhang JH; Mao ZG Bioprocess Biosyst Eng; 2011 Jun; 34(5):561-7. PubMed ID: 21212985 [TBL] [Abstract][Full Text] [Related]
5. Effects of dissolved oxygen and agitation on production of serratiopeptidase by Serratia marcescens NRRL B-23112 in stirred tank bioreactor and its kinetic modeling. Pansuriya R; Singhal R J Microbiol Biotechnol; 2011 Apr; 21(4):430-7. PubMed ID: 21532328 [TBL] [Abstract][Full Text] [Related]
6. Culture medium containing glucose and glycerol as a mixed carbon source improves ε-poly-L-lysine production by Streptomyces sp. M-Z18. Chen XS; Ren XD; Dong N; Li S; Li F; Zhao FL; Tang L; Zhang JH; Mao ZG Bioprocess Biosyst Eng; 2012 Mar; 35(3):469-75. PubMed ID: 21909683 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of nearly monodispersed poly(epsilon-L-lysine) in Streptomyces species. Saimura M; Takehara M; Mizukami S; Kataoka K; Hirohara H Biotechnol Lett; 2008 Mar; 30(3):377-85. PubMed ID: 17985083 [TBL] [Abstract][Full Text] [Related]
8. [Enhanced ε-poly-L-lysine production by improving cellular activity during fermentation]. Liu S; Wu Q; Zhang J; Yang X; Cai S Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):725-31. PubMed ID: 26562997 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of ε-poly-L-lysine production coupled with precursor L-lysine feeding in glucose-glycerol co-fermentation by Streptomyces sp. M-Z18. Chen XS; Ren XD; Zeng X; Zhao FL; Tang L; Zhang HJ; Zhang JH; Mao ZG Bioprocess Biosyst Eng; 2013 Dec; 36(12):1843-9. PubMed ID: 23624730 [TBL] [Abstract][Full Text] [Related]
10. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1. Xia J; Xu Z; Xu H; Liang J; Li S; Feng X Bioresour Technol; 2014 Jul; 164():241-7. PubMed ID: 24861999 [TBL] [Abstract][Full Text] [Related]
11. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology. Guo F; Zheng H; Cheng Y; Song S; Zheng Z; Jia S Lett Appl Microbiol; 2018 Feb; 66(2):124-131. PubMed ID: 29078007 [TBL] [Abstract][Full Text] [Related]
12. Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of ε-poly-L-lysine productivity. Zeng X; Chen XS; Ren XD; Liu QR; Wang L; Sun QX; Tang L; Mao ZG Appl Biochem Biotechnol; 2014 Aug; 173(8):2211-24. PubMed ID: 24974169 [TBL] [Abstract][Full Text] [Related]
13. Improvement of ε-poly-L-lysine production through seed stage development based on in situ pH monitoring. Sun QX; Chen XS; Ren XD; Mao ZG Appl Biochem Biotechnol; 2015 Jan; 175(2):802-12. PubMed ID: 25344435 [TBL] [Abstract][Full Text] [Related]
14. Comparison of glucose and glycerol as carbon sources for ε-poly-L-lysine production by Streptomyces sp. M-Z18. Chen XS; Mao ZG Appl Biochem Biotechnol; 2013 May; 170(1):185-97. PubMed ID: 23494215 [TBL] [Abstract][Full Text] [Related]
15. Substantially monodispersed poly(epsilon-L-lysine)s frequently occurred in newly isolated strains of Streptomyces sp. Hirohara H; Saimura M; Takehara M; Miyamoto M; Ikezaki A Appl Microbiol Biotechnol; 2007 Oct; 76(5):1009-16. PubMed ID: 17701409 [TBL] [Abstract][Full Text] [Related]
16. Improved vitamin B(12) production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Wang ZJ; Wang HY; Li YL; Chu J; Huang MZ; Zhuang YP; Zhang SL Bioresour Technol; 2010 Apr; 101(8):2845-52. PubMed ID: 20022743 [TBL] [Abstract][Full Text] [Related]
17. Maximization of beta-galactosidase production: a simultaneous investigation of agitation and aeration effects. Alves FG; Filho FM; de Medeiros Burkert JF; Kalil SJ Appl Biochem Biotechnol; 2010 Mar; 160(5):1528-39. PubMed ID: 19517069 [TBL] [Abstract][Full Text] [Related]
18. Effect of aeration and agitation on growth rate of Thermus thermophilus in batch mode. Demirtas MU; Kolhatkar A; Kilbane JJ J Biosci Bioeng; 2003; 95(2):113-7. PubMed ID: 16233377 [TBL] [Abstract][Full Text] [Related]
19. epsilon-Poly-L-lysine: microbial production, biodegradation and application potential. Yoshida T; Nagasawa T Appl Microbiol Biotechnol; 2003 Jul; 62(1):21-6. PubMed ID: 12728342 [TBL] [Abstract][Full Text] [Related]
20. [Feeding of mixed-carbon-resource during the expression phase in cultivation of recombinant Pichia pastoris expressing angiostatin]. Xie JL; Zhou QW; Zhang L; Ye Q; Xin L; Du P; Gan RB Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):467-70. PubMed ID: 15969066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]